4.4 Article

Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis

期刊

JOURNAL OF BACTERIOLOGY
卷 190, 期 9, 页码 3213-3224

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01936-07

关键词

-

向作者/读者索取更多资源

In Bacillus subtilis, several phenolic acids specifically induce expression of padC, encoding a phenolic acid decarboxylase that converts these antimicrobial compounds into vinyl derivatives. padC forms an operon with a putative coding sequence of unknown function, yveFG, and this coding sequence does not appear to be involved in the phenolic acid stress response (PASR). To identify putative regulators involved in the PASR, random transposon mutagenesis, combined with two different screens, was performed. PadR, a negative transcriptional regulator of padC expression, was identified. padR is not located in the vicinity of padC, and the expression of padR is low and appears constitutive. This is in contrast with what occurs in other gram-positive bacteria, in which padR is autoregulated and induced by phenolic acids. Further screening of the transposon library failed to identify genes other than padR involved in the PASR. Modest inactivation of padR by phenolic acids was obtained in recombinant Escherichia coli expressing padC and padR, and this translates into induction of decarboxylase activity. Gel shift promoter binding assays performed with and without MgCl2, and with and without phenolic acids, demonstrated that phenolic acids were able to abolish the binding of PadR to the yveFG-padC promoter in the absence of MgCl2. Altogether, our results indicate that (i) PadR is inactivated directly by phenolic acids in vitro, (ii) inhibition of PadR in response to phenolic acids may occur without the need for a sensor-like effector in B. subtilis, and (iii) phenolic acids are able to modulate PadR activity in E. coli in the absence of any additional effector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据