4.6 Article

Time constraints on the inversion of the tectonic regime in the northern margin of the North China Craton: Evidence from the Daqingshan granites

期刊

JOURNAL OF ASIAN EARTH SCIENCES
卷 79, 期 -, 页码 246-259

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jseaes.2013.09.032

关键词

Early Cretaceous; Magmatism; Geochronology; Geochemistry; NCC destruction

资金

  1. National Natural Science Foundation of China [90914001]

向作者/读者索取更多资源

The Daqingshan granites are located in a late Mesozoic tectono-magmatic belt at the northern margin of the North China Craton (NCC), and include the Deshengying, Xinisubei, Gulouban, and Kuisu plutons. Ion probe U-Pb zircon dating indicates that the granites were emplaced at 131 +/- 1, 140 +/- 4, 145 +/- 1, and 142 +/- 2 Ma, respectively. All of the granites are alkali- and potassium-rich, with high SiO2 (73.2-76.7 wt.%), K2O (4.50-5.57 wt.%), Na2O (3.60-4.93 wt.%), and K2O/Na2O (0.99-1.49), and low Al2O3 (12.3-14.5 wt.%), CaO (0.45-0.79 wt.%), and MgO (0.12 wt.%). The granites are light rare earth element enriched a La/YbIN = 5.6-48.7). The Xinisubei and Gulouban monzogranites and the Kuisu mylonitic monzogranite have small Eu anomalies (8Eu = 0.65-1.23), low Zr + Nb + Ce + Y (132-321 ppm), and exhibit a negative correlation between P2O5 and SiO2 contents, which are characteristic of highly fractionated I-type granites with a post-collisional origin. The Deshengying monzogranite is distinctive in being an aluminous A-type granite as evidenced by high 10,000 x Ga/AI (>2.6) and Zr + Nb + Ce + Y (312-532 ppm), low Ba and Sr, marked negative Eu anomalies (8Eu = 0.08-0.20), strong Ba, Sr, P, and Ti depletions, and an absence of alkali minerals. This granite was probably produced by partial melting of continental crust heated by hot mantle-derived magmas during crustal extension. The Deshengying monzogranite represents a post-kinematic pluton emplaced into the Daqingshan fold-and-thrust belt, whereas the Kuisu mylonitic monzogranite is a syn-kinematic pluton intruded along the Hohhot detachment fault. It is evident that the Daqingshan area experienced a change from a compressional to an extensional tectonic regime during 145-140 Ma. The post-orogenic collapse may have resulted in extension of the upper continental crust. Subsequently, as the thrust-detachment system became inactive, the lower crust of the NCC underwent modification and melting from 131 Ma. We conclude that the Early Cretaceous tectonic evolution of the Daqingshan area was caused by post-orogenic collapse and melting of the lower crust of the NCC. Delamination of the lower crust in the northern NCC resulted in crustal extension and asthenospheric upwelling, which produced A-type granites. As such, melting of the lower crust in the northwestern part of the NCC took place as early as the late Mesozoic. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据