4.3 Article

Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data

期刊

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.3400635

关键词

vegetation index; normalized difference vegetation index; enhanced vegetation index; two-band enhanced vegetation index; continuity; VIIRS; MODIS; band decomposition

向作者/读者索取更多资源

Vegetation indices (VIs) are widely used in long-term measurement studies of vegetation changes, including seasonal vegetation activity and interannual vegetation-climate interactions. There is much interest in developing cross-sensor/multi-mission vegetation products that can be extended to future sensors while maintaining continuity with present and past sensors. In this study we investigated multi-sensor spectral bandpass dependencies of the enhanced vegetation index (EVI), a 2-band EVI (EVI2), and the normalized difference vegetation index (NDVI) using spectrally convolved Earth Observing-1 (EO-1) Hyperion satellite images acquired over a range of vegetation conditions. Two types of analysis were carried out, including (1) empirical relationships among sensor reflectances and VIs and (2) decomposition of bandpass contributions to observed cross-sensor VI differences. VI differences were a function of cross-sensor bandpass disparities and the integrative manner in which bandpass differences in red, near-infrared (NIR), and blue reflectances combined to influence a VI. Disparities in blue bandpasses were the primary cause of EVI differences between the Moderate Resolution Imaging Spectroradiometer (MODIS) and other course resolution sensors, including the upcoming Visible Infrared Imager / Radiometer Suite (VIIRS). The highest compatibility was between VIIRS and MODIS EVI2 while AVHRR NDVI and EVI2 were the least compatible to MODIS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据