4.5 Article

Lactate threshold predicting time-trial performance: impact of heat and acclimation

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 111, 期 1, 页码 221-227

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00334.2011

关键词

heat stress; heat acclimation; heat acclimatization; critical power; endurance exercise

资金

  1. Clarissa and Evonuk Memorial Fellowship
  2. National Heart, Lung, and Blood Institute [HL-081671]

向作者/读者索取更多资源

Lorenzo S, Minson CT, Babb TG, Halliwill JR. Lactate threshold predicting time-trial performance: impact of heat and acclimation. J Appl Physiol111: 221-227, 2011. First published April 28, 2011; doi:10.1152/japplphysiol.00334.2011.-The relationship between exercise performance and lactate and ventilatory thresholds under two distinct environmental conditions is unknown. We examined the relationships between six lactate threshold methods (blood- and ventilation-based) and exercise performance in cyclists in hot and cool environments. Twelve cyclists performed a lactate threshold test, a maximal O-2 uptake ((V)over dotO(2max)) test, and a 1-h time trial in hot (38 degrees C) and cool (13 degrees C) conditions, before and after heat acclimation. Eight control subjects completed the same tests before and after 10 days of identical exercise in a cool environment. The highest correlations were observed with the blood-based lactate indexes; however, even the indirect ventilation-based indexes were well correlated with mean power during the time trial. Averaged bias was 15.4 +/- 3.6 W higher for the ventilation-than the blood-based measures (P < 0.05). The bias of blood-based measures in the hot condition was increased: the time trial was overestimated by 37.7 +/- 3.6 W compared with only 24.1 +/- 3.2 W in the cool condition (P < 0.05). Acclimation had no effect on the bias of the blood-based indexes (P = 0.51) but exacerbated the overestimation by some ventilation-based indexes by an additional 34.5 +/- 14.1 W (P < 0.05). Blood-based methods to determine lactate threshold show less bias and smaller variance than ventilation-based methods when predicting time-trial performance in cool environments. Of the blood-based methods, the inflection point between steady-state lactate and rising lactate (INFL) was the best method to predict time-trial performance. Lastly, in the hot condition, ventilation-based predictions are less accurate after heat acclimation, while blood-based predictions remain valid in both environments after heat acclimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据