4.5 Article

Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 108, 期 1, 页码 162-171

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00730.2009

关键词

space shuttle; respiratory tract; rodents; gene expression; histopathology; fibrosis

资金

  1. Loma Linda University Department of Radiation Medicine, Radiation Research Laboratories

向作者/读者索取更多资源

Tian J, Pecaut MJ, Slater JM, Gridley DS. Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. J Appl Physiol 108: 162-171, 2010. First published October 22, 2009; doi:10.1152/japplphysiol.00730.2009.NASA has reported pulmonary abnormalities in astronauts on space missions, but the molecular changes in lung tissue remain unknown. The goal of the present study was to explore the effects of spaceflight on expression of extracellular matrix (ECM), cell adhesion, and pro-fibrotic molecules in lungs of mice flown on Space Shuttle Endeavour (STS-118). C57BL/6Ntac mice housed in animal enclosure modules during a 13-day mission in space (FLT) were killed within hours after return; ground controls were treated similarly for comparison (GRD). Analysis of genes associated with ECM and adhesion molecules was performed according to quantitative RTPCR. The data revealed that FLT lung samples had statistically significant transcriptional changes, i.e., at least 1.5-fold, in 25 out of 84 examined genes (P < 0.05); 15 genes were upregulated and 10 were downregulated. The genes that were upregulated by more than twofold were Ctgf, Mmp2, Ncam1, Sparc, Spock1, and Timp3, whereas the most downregulated genes were Lama1, Mmp3, Mmp7, vcam-1, and Sele. Histology showed profibrosis-like changes occurred in FLT mice, more abundant collagen accumulation around blood vessels, and thicker walls compared with lung samples from GRD mice. Immunohistochemistry was used to compare expression of six selected proteins associated with fibrosis. Immunoreactivity of four proteins (MMP-2, CTGF, TGF-beta 1, and NCAM) was enhanced by spaceflight, whereas, no difference was detected in expression of MMP-7 and MMP-9 proteins between the FLT and GRD groups. Taken together, the data demonstrate that significant changes can be readily detected shortly after return from spaceflight in the expression of factors that can adversely influence lung function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据