4.6 Article

Numerical simulation of cross section electron-beam induced current in thin-film solar-cells for low and high injection conditions

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4823519

关键词

-

向作者/读者索取更多资源

Electron-beam induced current measurements (EBIC) in the cross-section configuration can be used to characterize electronic properties of thin-film solar-cells with a spatial resolution in the submicrometer range. Assuming low injection conditions and complete charge carrier collection in the depletion region, the minority charge-carrier diffusion length and width of the space charge region can be extracted from EBIC data using an analytical expression. In the present work, we evaluate the validity of the assumptions underlying the analytical description by using numerical device simulation to describe EBIC profiles perpendicular to the pn-junction of thin-film solar cells. We find that under low injection conditions, the analytical description provides good results if the minority charge-carrier diffusion length in the absorber layer is significantly larger than the width of the space charge region. On the other hand, the analytical description of the EBIC profiles deviates significantly from the numerical simulation for short diffusion lengths and also for high injection conditions. Experimental EBIC profiles of Cu(In,Ga)Se-2 solar cells are evaluated to obtain local minority carrier diffusion-lengths and to illustrate high-injection and low-injection effects in the measurements. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据