4.6 Article

The deformation units in metallic glasses revealed by stress-induced localized glass transition

期刊

JOURNAL OF APPLIED PHYSICS
卷 111, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4728207

关键词

-

向作者/读者索取更多资源

We report that even in quasi-static cyclic compressions in the apparent elastic regimes of the bulk metallic glasses, the precisely measured stress-strain curve presents a mechanical hysteresis loop, which is commonly perceived to occur only in high-frequency dynamic tests. A phenomenological viscoelastic model is established to explain the hysteresis loop and demonstrate the evolutions of the viscous zones in metallic glasses during the cyclic compression. The declining of the viscosity of the viscous zones to at least 1 x 10(12) Pa s when stress applied indicates that stress-induced localized glass to supercooled liquid transition occurs. We show that the deformation units of metallic glasses are evolved from the intrinsic heterogeneous defects in metallic glasses under stress and the evolution is a manifestation of the stress-induced localized glass transition. Our study might provide a new insight into the atomic-scale mechanisms of plastic deformation of metallic glasses. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728207]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据