4.6 Article

Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study

期刊

JOURNAL OF APPLIED PHYSICS
卷 112, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4768204

关键词

-

资金

  1. Chinese Academy of Sciences
  2. Deutsche Forschungsgemeinschaft [DFG-ZUK 45/1, SPP 1391, SFB 755]

向作者/读者索取更多资源

We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find similar to 230 fs pulses feasible in a focused electron beam. The main limitation to achieve sub-hundred femtosecond time resolution is the typical size of such a device, and we suggest the implementation of more compact electron optics for optimal performance. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768204]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据