4.6 Article

Gain enhancement in graphene terahertz amplifiers with resonant structures

期刊

JOURNAL OF APPLIED PHYSICS
卷 112, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4742998

关键词

-

资金

  1. JST CREST program
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan
  3. Grants-in-Aid for Scientific Research [23000008] Funding Source: KAKEN

向作者/读者索取更多资源

Terahertz (THz) devices have been investigated over the last decade to utilize THz waves for non-destructive sensing and high-speed wireless communications. Graphene with gapless and linear energy spectra is expected to exhibit population inversion and has negative dynamic conductivity in the THz range when it is illuminated by infrared light. We analyze a THz amplifier utilizing this negative dynamic conductivity combined with electric field enhancements due to surface plasmon polaritons induced on a metal mesh and with a resonant structure. We evaluate its characteristics through finite-difference time-domain electromagnetic simulations. The amplifier is expected to remarkably enhance THz emissions compared with amplifiers without the resonant structure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742998]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Ballistic Injection Terahertz Plasma Instability in Graphene n+-i-n-n+ Field-Effect Transistors and Lateral Diodes

Victor Ryzhii, Maxim Ryzhii, Akira Satou, Vladimir Mitin, Michael S. Shur, Taiichi Otsuji

Summary: The injection of ballistic electrons can lead to terahertz radiation and be utilized for optimizing devices through effective Coulomb drag and plasma instability.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2022)

Article Chemistry, Analytical

Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications

Michael Shur, Gregory Aizin, Taiichi Otsuji, Victor Ryzhii

Summary: Short-channel field-effect transistors (FETs) show potential for supporting the transition to 6G communications in the sub-THz and THz frequencies. Plasmonic crystals formed by TeraFET arrays can detect radiation intensity and phase, enabling line-of-sight terahertz (THz) detection, spectrometry, amplification, and generation for 6G communication. The ballistic and quasi-ballistic electron transport in TeraFET channels determine their response at sub-THz and THz frequencies.

SENSORS (2021)

Review Nanoscience & Nanotechnology

Graphene-based plasmonic metamaterial for terahertz laser transistors

Taiichi Otsuji, Stephane Albon Boubanga-Tombet, Akira Satou, Deepika Yadav, Hirokazu Fukidome, Takayuki Watanabe, Tetsuya Suemitsu, Alexander A. Dubinov, Vyacheslav V. Popov, Wojciech Knap, Valentin Kachorovskii, Koichi Narahara, Maxim Ryzhii, Vladimir Mitin, Michael S. Shur, Victor Ryzhii

Summary: This paper reviews recent advancements in graphene-based plasmonic metamaterials for terahertz (THz) laser transistors. The researchers investigate various approaches using graphene plasmonic metamaterials to achieve room-temperature, dry-cell-battery operated intense THz lasing with fast direct modulation. The paper discusses device structures and design constraints for coherent light sources applicable to future THz wireless communication systems.

NANOPHOTONICS (2022)

Article Physics, Applied

Coulomb drag and plasmonic effects in graphene field-effect transistors enable resonant terahertz detection

M. Ryzhii, V Ryzhii, T. Otsuji, V Mitin, M. S. Shur

Summary: The response of lateral n(+)-i-n-n(+) graphene field-effect transistors (GFETs) to terahertz (THz) radiation is analyzed in this study. The nonlinearity caused by Coulomb drag and plasmonic oscillations in the GFET channel enables a resonantly strong response, which can be used for effective resonant detection of THz radiation.

APPLIED PHYSICS LETTERS (2022)

Article Optics

Optical up-conversion-based cross-correlation for characterization of sub-nanosecond terahertz-wave pulses

Yuma Takida, Kouji Nawata, Takashi Notake, Taiichi Otsuji, Hiroaki Minamide

Summary: A nonlinear optical mixing technique is used to detect and characterize sub-nanosecond terahertz (THz)-wave pulses. The frequency up-conversion and parametric amplification methods are employed for sensitive detection and intensity cross-correlation characterization. The experimental results reveal the temporal profile of THz-wave pulses generated by the injection-seeded THz-wave parametric generator (is-TPG) in the tunable range of 0.95-2.00 THz to have a pulse width of 150-190 ps at full width at half-maximum.

OPTICS EXPRESS (2022)

Article Optics

Boosting photoconductive large-area THz emitter via optical light confinement behind a highly refractive sapphire-fiber lens

D. S. Ponomarev, D. Lavrukhin, N. Zenchenko, T. Frolov, I. A. Glinskiy, R. A. Khabibullin, G. M. Katyba, V. N. Kurlov, T. Otsuji, K. Zaytsev

Summary: We present a sapphire-fiber-based lens that enhances the emitted THz power of a large-area photo-conductive antenna (PCA). Numerical simulations demonstrate the effectiveness of the lens in redistributing the photocarriers density in the PCA's gap. We also propose a step-by-step process to precisely and controllably place the sapphire-fiber on the surface of a single PCA.

OPTICS LETTERS (2022)

Article Engineering, Electrical & Electronic

Analytical Methods for Evaluating the Characteristics of Noise Suppression Sheets

Eiichi Sano, Masayuki Ikebe

Summary: This article validates an analytical transmission-line method for calculating the inter-decoupling ratio of NSS and proposes a simplified method based on variational method and EM duality concept. The devised method can reproduce the measured results of commercially available NSS with high accuracy and shorter computational time compared to numerical full-wave EM simulators.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY (2022)

Article Physics, Applied

Resonant Plasmonic Terahertz Detection in Gated Graphene p-i-n Field-Effect Structures Enabled by Nonlinearity from Zener-Klein Tunneling

V. Ryzhii, T. Otsuji, M. Ryzhii, V. Mitin, M. S. Shur

Summary: This study demonstrates that resonant plasmonic detection significantly enhances the sensitivity of terahertz detectors based on a gated graphene field-effect transistor structure. By utilizing gated p and n regions as hole and electron reservoirs and terahertz resonant plasma cavities, the proposed device achieves terahertz signal rectification and excitation of plasmonic oscillations, leading to a substantial increase in detector responsivity.

PHYSICAL REVIEW APPLIED (2022)

Article Physics, Applied

Transit-time resonances enabling amplification and generation of terahertz radiation in periodic graphene p-i-n structures with the Zener-Klein interband tunneling

V. Ryzhii, M. Ryzhii, V. Mitin, M. S. Shur, T. Otsuji

Summary: The Zener-Klein interband tunneling in graphene layers can be utilized for processing and generation of terahertz signals, with negative dynamic conductance and transit-time instability. By using periodic cascade structures, THz amplification and radiation can be achieved.

JOURNAL OF APPLIED PHYSICS (2022)

Article Optics

Enhanced THz radiation through a thick plasmonic electrode grating photoconductive antenna with tight photocarrier confinement

Dmitry S. Ponomarev, Denis Lavrukhin, Igor A. Glinskiy, Alexander E. Yachmenev, Nikolay Zenchenko, Rustam A. Khabibullin, Yurii G. Goncharov, Taiichi Otsuji, Kirill I. Zaytsev

Summary: This study proposes the design of a photoconductive antenna (PCA) emitter with a plasmonic grating featuring a very high plasmonic Au electrode with a thickness of 170 nm. Numerical simulations show that increasing h leads to the excitation of higher-order plasmon guided modes in the Au slit waveguides, resulting in an additional increase in the emitted THz power. The fabricated PCA demonstrates efficient operation with low-power laser excitation, achieving an overall THz power of 5.3 mu W over a bandwidth of approximately 4.0 THz, corresponding to a conversion efficiency of 0.2%. This design holds promise for modern THz spectroscopic and high-speed imaging applications.

OPTICS LETTERS (2023)

Article Optics

Fast and sensitive terahertz detection with a current-driven epitaxial-graphene asymmetric dual-grating-gate field-effect transistor structure

Koichi Tamura, Chao Tang, Daichi Ogiura, Kento Suwa, Hirokazu Fukidome, Yuma Takida, Hiroaki Minamide, Tetsuya Suemitsu, Taiichi Otsuji, Akira Satou

Summary: In this study, a new epitaxial graphene field-effect transistor with an asymmetric dual-grating-gate (ADGG) structure was designed and fabricated to achieve fast and sensitive detection of terahertz radiation. The experimental results demonstrated its promising performance in high-speed wireless communication systems.

APL PHOTONICS (2022)

Article Physics, Applied

Hot-electron resonant terahertz bolometric detection in the graphene/black-AsP field-effect transistors with a floating gate

V. Ryzhii, C. Tang, T. Otsuji, M. Ryzhii, V. Mitin, M. S. Shur

Summary: We evaluated THz detectors based on graphene channel (GC) and a floating metal gate (MG) separated from GC by a black-phosphorus (b-P) or black-arsenic (b-As) barrier layer (BL). The operation of these GC-FETs involves heating of the two-dimensional electron gas in GC by THz radiation, leading to thermionic emission of hot electrons from GC to MG. This results in variation of the floating gate potential, affecting the source-drain current. At THz radiation frequencies close to plasmonic resonance frequencies in the gated GC, the variation in source-drain current and detector responsivity can be resonantly large.

JOURNAL OF APPLIED PHYSICS (2023)

Article Chemistry, Multidisciplinary

A Voltage-Tuned Terahertz Absorber Based on MoS2/Graphene Nanoribbon Structure

Omnia Samy, Mohamed Belmoubarik, Taiichi Otsuji, Amine El Moutaouakil

Summary: This study presents a thin THz absorber that can be easily tuned through the whole THz range (0.1-10 THz) by applying a low gate voltage (<1 V). The structure is based on cheap and abundant materials (MoS2/graphene). The absorptance frequency and width can be controlled by varying the structure and substrate dimensions, making it a promising alternative to expensive THz metamaterial-based absorbers.

NANOMATERIALS (2023)

Article Nanoscience & Nanotechnology

Micromechanical field-effect transistor terahertz detectors with optical interferometric readout

V. Ryzhii, C. Tang, T. Otsuji, M. Ryzhii, S. G. Kalenkov, V. Mitin, M. S. Shur

Summary: In this study, we investigate the response of the micromechanical field-effect transistors (MMFETs) to terahertz (THz) signals. The MMFET utilizes microcantilevers (MC) as a floating gate and the movable mirror of Michelson optical interferometer. The mechanical vibrations of MC are converted into optical signals, allowing MMFET to operate as a THz radiation detector. The combination of mechanical and plasmonic resonances in MMFET, along with optical amplification, enables effective THz detection.

AIP ADVANCES (2023)

Article Nanoscience & Nanotechnology

Enhanced terahertz detection of multigate graphene nanostructures

Juan A. Delgado-Notario, Wojciech Knap, Vito Clerico, Juan Salvador-Sanchez, Jaime Calvo-Gallego, Takashi Taniguchi, Kenji Watanabe, Taiichi Otsuji, Vyacheslav V. Popov, Denis V. Fateev, Enrique Diez, Jesus E. Velazquez-Perez, Yahya M. Meziani

Summary: This study fabricated a graphene terahertz field-effect transistor with an asymmetric-dual-grating-gate and a continuous graphite back-gate, which enhanced the THz rectified signal by forming abrupt junctions with different potential barriers. This paves the way for new record performances of graphene THz nano-photodetectors.

NANOPHOTONICS (2022)

暂无数据