4.6 Article

Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures

期刊

JOURNAL OF APPLIED PHYSICS
卷 111, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3682110

关键词

-

资金

  1. Toshiba Mitsubishi-Electric Industrial Systems Corporation (TMEIC)
  2. Stanford GCEP
  3. Stanford Graduate Fellowship

向作者/读者索取更多资源

The kinetics of Al-catalyzed layer exchange crystallization of amorphous germanium (Ge) thin films at low temperatures is reported. Observation of Ge mass transport from an underlying amorphous Ge layer to the Al film surface through an interposed sub-nanometer GeOx interfacial layer allows independent measurement of the areal density and average area of crystalline Ge islands formed on the film surface. We show that bias-voltage stressing of the interfacial layer can be used to control the areal density of nucleated Ge islands. Based on experimental observations, the Johnson-Mehl-Avrami-Kolmogorov phase transformation theory is used to model nanoscale nucleation and growth of Ge islands in two dimensions. Ge island nucleation kinetics follows an exponentially decaying nucleation rate with time. Ge island growth kinetics switches from linear growth at a constant growth velocity to diffusion-limited growth as the growth front advances. The transition point between these two regimes depends on the Ge nucleation site density and the annealing temperature. Knowledge of the kinetics of low-temperature crystallization is important in achieving textured polycrystalline Ge thin films with large grains for applications in large-area electronics and solar energy conversion. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682110]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据