4.6 Article

Lifetime limiting recombination pathway in thin-film polycrystalline silicon on glass solar cells

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3429206

关键词

-

资金

  1. University of New South Wales (UNSW)
  2. Australian Research Council (ARC)

向作者/读者索取更多资源

The minority carrier lifetimes of a variety of polycrystalline silicon solar cells are estimated from temperature-dependent quantum efficiency data. In most cases the lifetimes have Arrhenius temperature dependences with activation energies of 0.17-0.21 eV near room temperature. There is also a rough inverse relationship between lifetime and the base dopant concentration. Judging by this inverse law, the activation energies of the lifetimes, and the absence of plateau behavior in the lifetimes of the higher doped cells at low temperatures, it is inferred that the dominant recombination pathway involves the electronic transition between shallow states which are 0.05 -0.07 eV below the conduction band and 0.06-0.09 eV above the valence band, respectively, consistent with the shallow bands in silicon dislocations. The modeled recombination behavior implies that deep levels do not significantly affect the lifetimes for most of the cells at and below room temperature. (C) 2010 American Institute of Physics. [doi:10.1063/1.3429206]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据