4.6 Article

Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3115408

关键词

elemental semiconductors; finite element analysis; hydrogen; optical losses; optimisation; silicon; solar cells; texture; thin film devices

向作者/读者索取更多资源

Two-dimensional optical model for simulation of thin-film solar cells with periodical textured interfaces is presented. The model is based on finite element method and uses triangular discrete elements for the structure description. The advantages of the model in comparison to other existing models are highlighted. After validation and verification of the developed simulator, simulations of a microcrystalline silicon solar cell with a sinusoidal grating texture applied to the interfaces are carried out. The analysis and optimization of the two grating parameters-period and height of the grooves-are performed with respect to the maximal short-circuit current density of the cell. Up to 45% increase in the current density is identified for the optimized structure, compared to that of the cell with flat interfaces. Optical losses in the periodically textured silver back reflector are determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据