4.6 Article

Langmuir probe characterization of laser ablation plasmas

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3056131

关键词

Langmuir probes; laser ablation; plasma flow; plasma immersion ion implantation; plasma temperature

向作者/读者索取更多资源

For laser ablation plumes that are significantly ionized, Langmuir probes have proved to be a useful tool for measuring the plume shape, ion energy distribution, and electron temperature. Typically in laser ablation plasmas the flow velocity is supersonic, which complicates the interpretation of the current-voltage probe characteristic. In this paper we describe some recent developments on the application of Langmuir probes for laser ablation plume diagnosis. We have investigated the behavior of the probe when it is orientated perpendicular, and parallel, to the plasma flow, and show how an analytical model developed for plasma immersion ion implantation, can quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The ion signal recorded by a probe in the parallel position is proportional to the ion density and the square root of the bias voltage. It is shown that the current varies as m(i)(-1/2) so that by comparing the ion signals from the parallel and perpendicular positions it is possible to estimate the mass of the ions detected. We have also determined the temporal variation of electron temperature. A planar probe oriented parallel to the plasma flow, where the ion current due to the plasma flow is eliminated, gives a more reliable measurement of T(e) (< 0.6 eV). The measured T(e) is consistent with the measured ion current, which is dependent on T(e) when the time taken for an element of plasma to traverse the probe is longer than the time taken for the matrix ion sheath extraction phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据