4.6 Article

Increased ferromagnetic resonance linewidth and exchange anisotropy in NiFe/FeMn bilayers

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3086292

关键词

damping; ferromagnetic materials; ferromagnetic resonance; g-factor; interface magnetism; iron alloys; magnetic anisotropy; magnetic relaxation; magnetic thin films; magnons; manganese alloys; metallic thin films; nickel alloys; sputter deposition

资金

  1. National Natural Science Foundation of China [10504019, 10674092]
  2. Science and Technology Innovation Fund of the Shanghai Education Committee [09ZZ95]

向作者/读者索取更多资源

In the past investigations, the exchange-biased bilayers show much larger ferromagnetic resonance (FMR) linewidth than that of single ferromagnetic layer films. However, the mechanism of the large linewidth remains controversial. In this paper, the FMR linewidths of NiFe/FeMn bilayers prepared by dc magnetron sputtering system are systematically studied. Besides the intrinsic damping and magnetic inhomogeneity, the extrinsic relaxation based on two-magnon scattering process should be also considered to explain the strong in-plane angular dependence of the linewidths. The fitting of the out-of-plane angular dependence of the linewidths shows that the intrinsic Gilbert damping effect plays a major role in the increased linewidth in the bilayers. The value of the g factor increases due to the effect of the exchange coupling at the NiFe/FeMn interface, resulting in an enhancement in the Gilbert damping factor G. The fitting results indicate that the line broadening of the exchange-biased films is related to the exchange anisotropy. The effects of FeMn layer thickness, growth sequence of FeMn layer, and temperature on the linewidths further approve this interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据