4.6 Article

Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al2O3 composites

期刊

JOURNAL OF APPLIED PHYSICS
卷 104, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2985915

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-97ER45656]
  2. U.S. Department of Energy (DOE) [DE-FG02-97ER45656] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

A plasma polymerization method was employed to deposit an ultrathin pyrrole film of 3 nm onto the surfaces of single wall carbon nanotubes (SWCNTs) and Al2O3 nanoparticles for developing high-strength nanocomposites. The surfaces of plasma coated SWCNTs and Al2O3 nanoparticles were studied by high resolution transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectroscopy. After sintering the SWCNTs-Al2O3 composites at different temperatures (maximum of 1200 degrees C), the thermal stability of plasma-coated SWCNTs was significantly increased, compared to their uncoated counterparts. After hot-press sintering, the SWCNTs without plasma coating were essentially decomposed into amorphous clusters in the composites, leading to degraded mechanical properties. However, under the same sintering conditions, the plasma surface modified SWCNTs were well preserved and distributed in the composite matrices. The effects of plasma surface coating on the thermal stability of SWCNTs and mechanical behavior of the nanocomposites are discussed. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据