4.6 Article

Deformation behavior of an amorphous Cu64.5Zr35.5 alloy: A combined computer simulation and experimental study

期刊

JOURNAL OF APPLIED PHYSICS
卷 104, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3043587

关键词

copper alloys; elastic constants; high-temperature effects; metallic glasses; molecular dynamics method; plastic deformation; softening; Young's modulus; zirconium alloys

资金

  1. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]

向作者/读者索取更多资源

Molecular dynamics (MD) simulations were performed to examine the temperature-dependent elastic properties and high-temperature deformation behavior of a Cu64.5Zr35.5 amorphous alloy. From the simulations we find that the elastic constants of the amorphous solid and supercooled liquid exhibit an approximately linear temperature dependence. The predicted temperature dependence of the Young's modulus for the amorphous solid obtained from the MD simulations is in good agreement with experimental measurements using dynamic mechanical analysis. Furthermore, the high-temperature plastic deformation behavior determined by MD simulations is qualitatively in good agreement with results from plastic deformation experiments performed on 1 mm diameter Cu64.5Zr35.5 metallic glass rods at 698 K. Notably, the MD simulations reveal that the flow softening regime of the stress-strain curve corresponds to an increase in the free volume in the atomic structure. Moreover, the simulations indicate that the atomic mobility significantly increases within the same regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据