4.7 Article

Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jaap.2011.01.002

关键词

IR; SEM; TEM; S-BET; M-r; Al2O3-doped ZnFe2O4

向作者/读者索取更多资源

Zinc ferrite nano-powders with a nominal composition of ZnFe2O4 were prepared by combustion synthesis using mixture of urea and ammonium nitrate as fuel. The influence of alumina-doping on the structural, morphological and magnetic properties of ZnFe2O4 nano-particles was investigated by means of X-ray powder diffraction (XRD), infrared (IR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and vibrating sample magnetometer (VSM). XRD and IR analyses confirm the cubic spinel phase of ZnFe2O4 nano-particles. The Zn ferrite presented a uniform microstructure with grain size in nano-scale. Alumina-doping brought about a change in the morphology of the as prepared ferrite from sphere-like to regular hexagon. Al2O3-treatment led to a decrease in the coercivity (H-c), magnetization (M-s) and magnetic moment (n(B)) of the investigated system. The maximum decrease in the values of H-c, M-s and n(B) due to the treatment with 1.5 wt% Al2O3 attained 13.5, 17.4 and 13.5%, respectively. The observed results can be explained on the basis of particle size and the Fe3+ concentration in the octahedral and tetrahedral sites involved in the cubic spinel structure. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Analytical

Effect of pretreatment with hydrogen peroxide at different pHs on corn stalk: Characterizations of structure, composition, and pyrolysis properties

Guanshuai Zhang, Shanjian Liu, Dongmei Bi, Zhisen He, Jia Liu, Yinjiao Liu

Summary: Hydrogen peroxide pretreatment was applied for fast pyrolysis of corn stalks, and it was found that the pretreatment effectively promoted lignin depolymerization and decreased the reaction activation energy. The pretreatment also increased the cellulose content and removed alkali and alkaline earth metals from the biomass. The pH of the hydrogen peroxide solution affected the removal of lignin and ash by the pretreatment, and the composition of bio-oil changed significantly, with a significant increase in the relative content of levoglucosan after pretreatment.

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2024)