4.8 Article

Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates

期刊

ACTA BIOMATERIALIA
卷 26, 期 -, 页码 34-44

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.08.025

关键词

Nanocomposites; Elastomer; Poly(glycerol sebacate); Two-dimensional (2D) silicates; Bone regeneration

向作者/读者索取更多资源

Poly(glycerol sebacate) (PGS) has been proposed for tissue engineering applications owing to its tough elastomeric mechanical properties, biocompatibility and controllable degradation. However, PGS shows limited bioactivity and thus constraining its utilization for musculoskeletal tissue engineering. To address this issue, we developed bioactive, highly elastomeric, and mechanically stiff nanocomposites by covalently reinforcing PGS network with two-dimensional (2D) nanosilicates. Nanosilicates are ultrathin nanomaterials and can induce osteogenic differentiation of human stem cells in the absence of any osteogenic factors such as dexamethasone or bone morphogenetic proteins-2 (BMP2). The addition of nanosilicate to PGS matrix significantly enhances the mechanical stiffness without affecting the elastomeric properties. Moreover, nanocomposites with higher amount of nanosilicates have higher in vitro stability as determined by degradation kinetics. The increase in mechanical stiffness and in vitro stability is mainly attributed to enhanced interactions between nanosilicates and PGS. We evaluated the in vitro bioactivity of nanocomposite using preosteoblast cells. The addition of nanosilicates significantly enhances the cell adhesion, support cell proliferation, upregulate alkaline phosphates and mineralized matrix production. Overall, the combination of high mechanically stiffness and elastomericity, tailorable degradation profile, and the ability to promote osteogenic differentiation of PGS-nanosilicate can be used for regeneration of bone. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据