4.8 Article

Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids

期刊

NANOSCALE
卷 7, 期 18, 页码 8619-8626

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr07655a

关键词

-

资金

  1. National Natural Science Foundation [21302176]
  2. China Postdoctoral Science Foundation [2014M561843]
  3. Development Foundation of CAEP [2013B0302042]

向作者/读者索取更多资源

A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement effect was repeatedly renewed by the reconstruction of molecular bridges, which could selectively detect TNT with a lower limit of 4 x 10(-14) M. In addition, TNT vapor was also tested under this sensor, whereby once the ZnO-Ag NRs hybrid substrate was dipped in TNT, this substrate could detect the existence of TNT even in 5 detection cycles via a capillarity-constructed reversible hot spots approach. Compared with other pure Ag-based SERS sensors, this ZnO-Ag hybrid SERS sensor could rapidly self-revive SERS-activity by simple UV light irradiation and could retain stable SERS sensitivity for one month when used for TNT detection. This stable and ultrasensitive SERS substrate demonstrates a new route to eliminate the oxidized inactive problem of traditional Ag-based SERS substrates and suggests promising use in the applications of such hybrids as real-time online sensors for explosives detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据