4.8 Article

Giant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions

期刊

NANOSCALE
卷 7, 期 4, 页码 1339-1348

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr05656f

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canadian Space Agency

向作者/读者索取更多资源

High piezoresistivity is critical for multifunctional carbon nanotube polymer composites with sensing capability. By developing a new percolation network model, this work reveals theoretically that a giant piezoresistivity in the composites can be potentially achieved by controlled nanotube alignment resulting from field based alignment techniques. The tube-tube and/or tube-matrix interaction in conjunction with the aligned carbon nanotube networks are fully considered in the newly proposed model. The structural distortion of nanotubes is determined self-consistently by minimizing the pseudo-potential energy at crossed-tube junctions based on the Lennard-Jones potential and simulation of coarse grain molecular dynamics. The tunneling transport through crossed-tube junctions is calculated by the Landauer-Buttiker formula with empirical fitting by first-principle calculation. The simulation results also reveal that the piezoresistivity can be further improved by using low carbon nanotube loadings near the percolation threshold, carbon nanotubes with a small aspect ratio, high intrinsic conductivity and polymers with a small Poisson's ratio. This giant piezoresistive effect offers a tremendously promising future, which needs further thorough exploration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据