4.8 Article

Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film

期刊

NANO LETTERS
卷 15, 期 9, 页码 5893-5898

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b01970

关键词

vanadium dioxide; terahertz; high-field; phase transition; nanoantenna; plasmonics

资金

  1. National Science Foundation (NSF) [1063632]
  2. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2005-0093838, 2008-00580, 2008-0061906, 2015031768]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1063632] Funding Source: National Science Foundation
  5. National Research Foundation of Korea [2005-0093838, 2008-0061906, 2008-00580] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据