4.8 Article

Ultrafast Dynamics of Lasing Semiconductor Nanowires

期刊

NANO LETTERS
卷 15, 期 7, 页码 4637-4643

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b01271

关键词

Semiconductor nanowire; ultrafast lasing; onset time; pulse width; carrier thermalization; carrier-phonon interaction

资金

  1. German Research Society (DFG) [FOR1616]
  2. Engineering and Physical Sciences Research Council [EP/I004343/1] Funding Source: researchfish
  3. EPSRC [EP/I004343/1] Funding Source: UKRI

向作者/读者索取更多资源

Semiconductor nanowire lasers operate at ultrafast timescales; here we report their temporal dynamics, including laser onset time and pulse width, using a double-pump approach. Wide bandgap gallium nitride (GaN), zinc oxide (ZnO), and cadmium sulfide (CdS) nanowires reveal laser onset times of a few picoseconds, driven by carrier thermalization within the optically excited semiconductor. Strong carrier-phonon coupling in ZnO leads to the fastest laser onset time of similar to 1 ps in comparison to CdS and GaN exhibiting values of similar to 2.5 and similar to 3.5 ps, respectively. These values are constant between nanowires of different sizes implying independence from any optical influences. However, we demonstrate that the lasing onset times vary with excitation wavelength relative to the semiconductor band gap. Meanwhile, the laser pulse widths are dependent on the optical system. While the fastest ultrashort pulses are attained using the thinnest possible nanowires, a sudden change in pulse width from similar to 5 to similar to 15 ps occurs at a critical nanowire diameter. We attribute this to the transition from single to multimode waveguiding, as it is accompanied by a change in laser polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Low-energy ion channeling in nanocubes

Shiva Choupanian, Wolfhard Moller, Martin Seyring, Carsten Ronning

Summary: This study experimentally demonstrates channeling of low-energy ions in crystalline nanoparticles, which differs from conventional high-energy ion irradiation. Channeling has a significant impact on ion transport in crystals and is relevant for focused ion beam (FIB) applications. Therefore, it is recommended not to solely rely on standard Monte-Carlo algorithms for predicting ion distribution depths in amorphous materials.

NANO RESEARCH (2023)

Article Materials Science, Multidisciplinary

A Combination of Ion Implantation and High-Temperature Annealing: The Origin of the 265 nm Absorption in AlN

Lukas Peters, Christoph Margenfeld, Jan Krugener, Carsten Ronning, Andreas Waag

Summary: The presence of carbon impurities in AlN was believed to be the main cause of the absorption at 265 nm. However, this study revealed that the intrinsic nitrogen-vacancy defect V-N plays a crucial role in the absorption. This finding is significant for further improvement of UV-LEDs.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Optics

Lasing modes in ZnO nanowires coupled to planar metals

Daniel Repp, Angela Barreda, Francesco Vitale, Isabelle Staude, Ulf Peschel, Carsten Ronning, Thomas Pertsch

Summary: Semiconductor nanowire lasers can have their lasing threshold modified by their environment, and using metallic substrates can access low-volume Surface-Plasmon-Polariton (SPP) modes and describe mode competition in nanowire lasers. The study found that an aluminum substrate decreases the lasing threshold for ZnO nanowire lasers, while a silver substrate increases the threshold compared to a dielectric substrate. These findings allow for predictions about the interaction between planar metals and semiconductor nanowires, guiding future improvements in highly-integrated laser sources.

OPTICS EXPRESS (2023)

Article Nanoscience & Nanotechnology

C8-BTBT-C8 Thin-Film Transistors Based on Micro-Contact Printed PEDOT:PSS/MWCNT Electrodes

Kirill Gubanov, Manuel Johnson, Melda Akay, Benedikt C. C. Wolz, Dan Shen, Xing Cheng, Silke Christiansen, Rainer H. H. Fink

Summary: Advances in organic materials manufacturing have enabled the creation of electronic devices using solution-processing techniques. This study demonstrates the use of micro-contact for high-quality structured electrodes in top-contact organic field-effect transistors (OFETs) by depositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer ink. The optimized solution-processing fabrication of OFETs shows promising potential for simple and cost-effective roll-to-roll manufacturing processes, with comparable electrical performance to transistors with gold electrodes and lower contact resistance (R-c) due to carbon-based organic electrodes.

ADVANCED ELECTRONIC MATERIALS (2023)

Article Chemistry, Multidisciplinary

Spatially Resolved Dynamics of Cobalt Color Centers in ZnO Nanowires

Christian T. Plass, Valentina Bonino, Maurizio Ritzer, Lukas R. Jager, Vicente Rey-Bakaikoa, Martin Hafermann, Jaime Segura-Ruiz, Gema Martinez-Criado, Carsten Ronning

Summary: The dynamics of color centers in quantum technology are influenced by the local environment, and a combined approach of X-ray fluorescence analysis and X-ray excited optical luminescence (XEOL) was used to study this relationship. The simultaneous acquisition of data revealed compositional and functional variations at the nanoscale, demonstrating the extraordinary capabilities of these techniques. The findings on cobalt doped zinc oxide nanowires showed an anticorrelation between the band edge emission of the zinc oxide host and the intra-3d cobalt luminescence, indicating two competing recombination paths. Time-resolved XEOL measurements also revealed two exponential decays of the cobalt luminescence, with the fast decay attributed to a recombination cascade within the cobalt atom.

ADVANCED SCIENCE (2023)

Article Physics, Applied

Tailoring nanowire lasing modes via coupling to metal gratings

F. Vitale, D. Repp, T. Siefke, U. Zeitner, U. Peschel, T. Pertsch, C. Ronning

Summary: In this study, a mode selection scheme based on distributed feedback was proposed to achieve quasi-single mode lasing action in plasmonic nanowires. The orientation of the nanowire on the grating was found to affect the emission spectrum, with an additional peak emerging when the nano-cavity was perpendicular to the ridge direction. This peak was attributed to a hybrid mode dominating the mode competition and supported by localized plasmon polaritons on the metal grating ridges.

APPLIED PHYSICS LETTERS (2023)

Article Materials Science, Multidisciplinary

Structure-dependent optical properties of Au/Ag irradiated TiN thin films

M. Popovic, M. Novakovic, D. Vana, C. Ronning, D. Jugovic, V. Rajic, P. Noga

Summary: In this study, sequential implantation of gold and silver ions with varying ion fluence, as well as subsequent annealing, were used to modify the optical and plasmonic properties of TiN thin films and correlate them with their structural properties. The implanted films showed reduced metallicity and lower losses compared to the as-deposited film, while subsequent annealing partially recovered the destroyed structure and improved the metallic properties. By optimizing the implantation fluence of silver ions, TiN films with desirable optical performances were obtained.

OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

A Combination of Ion Implantation and High-Temperature Annealing: Donor-Acceptor Pairs in Carbon-Implanted AlN

Lukas Peters, Hendrik Spende, Stefan Wolter, Christoph Margenfeld, Carsten Ronning, Tobias Voss, Andreas Waag

Summary: In this study, carbon-implanted and high-temperature annealed AlN layers were analyzed using cathodoluminescence spectroscopy. Donor-acceptor pair transitions between carbon and oxygen impurities were identified. The presence of oxygen led to absorption in the deep UV range, while carbon was responsible for an absorption band at around 265 nm. The findings were supported by temperature- and power-dependent emission energy shifts and luminescence transients.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Multidisciplinary Sciences

Emission enhancement of erbium in a reverse nanofocusing waveguide

Nicholas A. Gusken, Ming Fu, Maximilian Zapf, Michael P. Nielsen, Paul Dichtl, Robert Roeder, Alex S. Clark, Stefan A. Maier, Carsten Ronning, Rupert F. Oulton

Summary: Since Purcell's seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. In this letter, the authors report a strong radiative emission rate enhancement of Er3+-ions across the telecommunications C-band in a single plasmonic waveguide based on the Purcell effect. The waveguide uses a reverse nanofocusing approach to efficiently enhance, extract, and guide emission from the nanoscale to a photonic waveguide, while keeping losses at a minimum.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Influence of Initial Surface Roughness on LIPSS Formation and Its Consecutive Impact on Cell/Bacteria Attachment for TiAl6V4 Surfaces

Lamborghini Sotelo, Tommaso Fontanot, Sanjana Vig, Patrick Herre, Peyman Yousefi, Maria Helena Fernandes, George Sarau, Gerd Leuchs, Silke Christiansen

Summary: This study investigates the effect of the initial surface roughness of TiAl6V4 samples on laser-induced periodic surface structures (LIPSS), surface wettability, and chemistry. Different polishing grain sizes were used to adjust the surface roughness of the samples. Laser irradiation was performed with varying laser power and distance. The resulting structures were characterized by SEM, AFM, Raman spectroscopy, and contact angle measurements. The study also explores the bone implant viability of the generated structures. The results demonstrate that initial surface roughness affects the wettability and orientation of the resulting LIPSS, and structures with higher integrated fluence enhance cell differentiation and reduce bacterial activity, making them promising for bone implant compatibility and durability.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Nanoscience & Nanotechnology

Silicone-Based Lubricant-Infused Slippery Coating Covalently Bound to Aluminum Substrates for Underwater Applications

Lucia H. Prado, David Boehringer, Anca Mazare, Lamborghini Sotelo, George Sarau, Silke Christiansen, Ben Fabry, Patrik Schmuki, Sannakaisa Virtanen, Wolfgang H. Goldmann, Alexander B. Tesler

Summary: Researchers have developed a convenient UV-grafting technique to covalently attach silicone-based coatings to solid substrates. The short-time exposure to UV light results in the formation of lubricant-infused slippery surfaces (LISS), while longer exposure leads to the formation of semi-rigid cross-linked polydimethylsiloxane (PDMS) coatings. These coatings exhibit excellent resistance to corrosion and biofouling in aquatic environments. Due to its simple fabrication, low cost, rapid binding kinetics, eco-friendliness, non-toxicity to aquatic life, and excellent wetting-repellent characteristics, this technology has great potential for implementation in aquatic environments.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Materials Science, Multidisciplinary

Early oxidation stages of austenitic stainless steel monitored using Mn as tracer

Robert Wonneberger, Gloria Kirste, Martin Seyring, Martin Hafermann, Carsten Ronning, Maximilian Schaal, Felix Otto, Torsten Fritz, Andreas Undisz

Summary: Understanding the growth mechanism of oxide layer on 316 L requires knowledge of reaction front position, oxide phase formation, and elements diffusion paths. By using Mn as a tracer in a new experimental approach, essential information of the early stages of oxidation up to 600 °C is obtained. The study suggests a previously undocumented role of Cr valence state during oxide growth, as Cr6+ is detected at 600 °C.

CORROSION SCIENCE (2023)

Article Instruments & Instrumentation

Versatile tabletop setup for picosecond time-resolved resonant soft-x-ray scattering and spectroscopy

Martin Borchert, Julia Braenzel, Richard Gnewkow, Leonid Lunin, Themistoklis Sidiropoulos, Johannes Tuemmler, Ingo Will, Tino Noll, Oliver Reichel, Dirk Rohloff, Alexei Erko, Thomas Krist, Clemens von Korff Schmising, Bastian Pfau, Stefan Eisebitt, Holger Stiel, Daniel Schick

Summary: We present a laser-driven soft-x-ray plasma source with short pulse duration and wide spectral range. This source is used in two laboratory-scale beamlines for time-resolved magnetic resonant scattering, spectroscopy, and NEXAFS spectroscopy. Dedicated reflection zone plates are utilized as optical elements to capture, disperse, and focus the soft x rays, achieving high resolving powers and efficient data acquisition. Our setup enables soft-x-ray experiments that were not previously possible on a laboratory scale, making it a viable alternative to large-scale facilities.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Materials Science, Multidisciplinary

Heavily Doped Zinc Oxide with Plasma Frequencies in the Telecommunication Wavelength Range

Alexander Koch, Hongyan Mei, Jura Rensberg, Martin Hafermann, Jad Salman, Chenghao Wan, Raymond Wambold, Daniel Blaschke, Heidemarie Schmidt, Jurgen Salfeld, Sebastian Geburt, Mikhail A. A. Kats, Carsten Ronning

Summary: This study demonstrates the heavy and hyper doping of ZnO with gallium (Ga) ions using a focused ion beam (FIB) system combined with post-implantation laser annealing. The ion implantation allows for the incorporation of impurities with high concentrations, while the laser annealing process activates the dopants close to or beyond the solid-solubility limit of Ga in ZnO. Heavy doped ZnO:Ga with a free-carrier concentration of approximately 10^(21) cm^(-3) and a plasma wavelength of 1.02 μm is achieved, making it a promising plasmonic material for applications in the near infrared regime.

ADVANCED PHOTONICS RESEARCH (2023)

Article Chemistry, Multidisciplinary

Tuning nanowire lasers via hybridization with two-dimensional materials

Edwin Eobaldt, Francesco Vitale, Maximilian Zapf, Margarita Lapteva, Tarlan Hamzayev, Ziyang Gan, Emad Najafidehaghani, Christof Neumann, Antony George, Andrey Turchanin, Giancarlo Soavi, Carsten Ronning

Summary: Mixed-dimensional hybrid structures are promising building blocks for controlling and modulating lasers at the nanoscale. Hybridization of ZnO nanowires with MoS2 monolayers allows for tuning the lasing wavelength at the nanoscale.

NANOSCALE (2022)

暂无数据