4.5 Article

LunarVader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica

期刊

JOURNAL OF AEROSPACE ENGINEERING
卷 26, 期 1, 页码 74-86

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)AS.1943-5525.0000212

关键词

Drilling; Sampling; Moon; Lunar drilling; Lunar drill; Subsurface exploration; Rotary-percussive; Hammer drill; Percussive drill; Planetary exploration

资金

  1. United States Antarctic Program, National Science Foundation Office of Polar Programs

向作者/读者索取更多资源

Future exploration of the Moon will require access to the subsurface and acquisition of samples for scientific analysis and ground truthing of water-ice and mineral reserves for in situ resource utilization purposes. The LunarVader drill described in this paper is a 1-m class drill and cuttings acquisition system enabling subsurface exploration of the Moon. The drill employs rotary-percussive action, which reduces the weight on bit and energy consumption. This drilling approach has been successfully used by previous lunarmissions, such as the Soviet Luna 16, 20, and 24, and United States Apollo 15, 16, and 17. These missions and drilling systems are described in detail. The passive sample acquisition system of the LunarVader drill delivers cuttings directly into a sample cup or an instrument inlet port. The drill was tested in a vacuum chamber and penetrated various formations, such as a water-saturated lunar soil simulant (JSC-1A) at-80 degrees C, water-ice, and rocks to a depth of 1m. The system was also field tested in the lunar analog site on Ross Island, Antarctica, where it successfully penetrated to 1-m depth and acquired icy samples into a sample cup. During the chamber and field testing, the LunarVader demonstrated drilling at the 1-1-100-100 level; that is, it penetrated 1 m in approximately 1 h with roughly 100-W power and less than 100-N weight on bit. This corresponds to a total drilling energy of approximately 100 Whr. The drill system achieved high enough technology readiness to be considered as a viable option for future lunarmissions, such as the South Pole-Aitken Basin Sample Return and Geophysical Network missions recently recommended by the Decadal Survey of the National Research Council, and commercial missions, such as Google Lunar X-Prize missions. DOI: 10.1061/(ASCE)AS.1943-5525.0000212. (C) 2013 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据