4.4 Article

Observing and Simulating the Summertime Low-Level Jet in Central Iowa

期刊

MONTHLY WEATHER REVIEW
卷 143, 期 6, 页码 2319-2336

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-14-00325.1

关键词

-

资金

  1. U.S. Department of Energy [DE-AC36-08GO28308]
  2. National Renewable Energy Laboratory
  3. National Science Foundation under the State of Iowa EPSCoR Grant [1101284]

向作者/读者索取更多资源

In the U.S. state of Iowa, the increase in wind power production has motivated interest into the impacts of low-level jets on turbine performance. In this study, two commercial lidar systems were used to sample wind profiles in August 2013. Jets were systematically detected and assigned an intensity rating from 0 (weak) to 3 (strong). Many similarities were found between observed jets and the well-studied Great Plains low-level jet in summer, including average jet heights between 300 and 500 m above ground level, a preference for southerly wind directions, and a nighttime bias for stronger jets. Strong vertical wind shear and veer were observed, as well as veering over time associated with the LLJs. Speed, shear, and veer increases extended into the turbine-rotor layer during intense jets. Ramp events, in which winds rapidly increase or decrease in the rotor layer, were also commonly observed during jet formation periods. The lidar data were also used to evaluate various configurations of the Weather Research and Forecasting Model. Jet occurrence exhibited a stronger dependence on the choice of initial and boundary condition data, while reproduction of the strongest jets was influenced more strongly by the choice of planetary boundary layer scheme. A decomposition of mean model winds suggested that the main forcing mechanism for observed jets was the inertial oscillation. These results have implications for wind energy forecasting and site assessment in the Midwest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据