4.7 Article

Shadow detection in very high spatial resolution aerial images: A comparative study

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.isprsjprs.2013.02.003

关键词

Shadow detection; Urban areas; High spatial resolution; Multispectral and hyperspectral

资金

  1. DSO National Laboratories, Singapore
  2. ONERA, France
  3. ANR VegDUD project

向作者/读者索取更多资源

Automatic shadow detection is a very important pre-processing step for many remote sensing applications, particularly for images acquired with high spatial resolution. In complex urban environments, shadows may occupy a significant portion of the image. Ignoring these regions would lead to errors in various applications, such as atmospheric correction and classification. To better understand the radiative impact of shadows, a physical study was conducted through the simulation of a synthetic urban canyon scene. Its results helped to explain the most common assumptions made on shadows from a physical point of view in the literature. With this understanding, state-of-the-art methods on shadow detection were surveyed and categorized into six classes: histogram thresholding, invariant color models, object segmentation, geometrical methods, physics-based methods, unsupervised and supervised machine learning methods. Among them, some methods were selected and tested on a large dataset of multispectral and hyperspectral airborne images with high spatial resolution. The dataset chosen contains a large variety of typical occidental urban scenes. The results were compared based on accurate reference shadow masks. In these experiments, histogram thresholding on RGB and NIR channels performed the best with an average accuracy of 92.5%, followed by physics-based methods, such as Richter's method with 90.0%. Finally, this paper analyzes and discusses the limits of these algorithms, concluding with some recommendations for shadow detection. (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据