4.7 Article

Enhancement of Cytotoxicity and Inhibition of Angiogenesis in Oral Cancer Stem Cells by a Hybrid Nanoparticle of Bioactive Quinacrine and Silver: Implication of Base Excision Repair Cascade

期刊

MOLECULAR PHARMACEUTICS
卷 12, 期 11, 页码 4011-4025

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.5b00461

关键词

quinacrine; silver; hybrid nanoparticle; oral cancer; oral cancer stem cells

资金

  1. Indian Council of Medical Research
  2. Department of Biotechnology, Government of India

向作者/读者索取更多资源

A poly(lactic-co-glycolic acid) (PLGA)-based uniform (50-100 nm) hybrid nanoparticle (QAgNP) with positive zeta potential (0.52 0.09 mV) was prepared by single emulsion solvent evaporation method with bioactive small molecule quinacrine (QC) in organic phase and silver (Ag) in aqueous phase. Physiochemical properties established it as a true hybrid nanoparticle and not a mixture of QC and Ag. Antitumor activity of QAgNP was evaluated by using various cancer cell lines including H-357 oral cancer cells and OSCC-cancer stem cell in an in vitro model system. QAgNP caused more cytotoxicity in cancer cells than normal epithelial cells by increasing BAX/BCL-XL, cleaved product PARP-1, and arresting the cells at S phase along with DNA damage. In addition, QAgNPs offered greater ability to kill the OSCC-CSCs compared to NQC and AgNPs. QAgNP offered anticancer action in OSCC-CSCs by inhibiting the base excision repair (BER) within the cells. Interestingly, alteration of BER components (Fen-1 and DNA polymerases (beta, delta, and epsilon) and unalteration of NHEJ (DNA-PKC) or HR (Rad-51) components was noted in QAgNP treated OSCC-CSC cells. Furthermore, QAgNP significantly reduced angiogenesis in comparison to physical mixture of NQC and AgNP in fertilized eggs. Thus, these hybrid nanoparticles caused apoptosis in OSCC-CSCs by inhibiting the angiogenesis and BER in cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据