4.6 Article

Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction

期刊

MOLECULAR NEURODEGENERATION
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1750-1326-10-3

关键词

USP14; JNK; Ubiquitin; Neuromuscular junction; MLK3; Synapse; Ubiquitin proteasome system; K63-linked ubiquitin; Motor neuron; Motor endplate disease

资金

  1. Howard Hughes Medical Institute through the Med into Grad Initiative
  2. Civitan Research Center
  3. Evelyn F. McKnight Brain Institute
  4. National Institutes of Health [R01 NS047533, R21 NS074456]

向作者/读者索取更多资源

Background: Ubiquitin-specific protease 14 (USP14) is one of three proteasome-associated deubiquitinating enzymes that remove ubiquitin from proteasomal substrates prior to their degradation. In vitro evidence suggests that inhibiting USP14's catalytic activity alters the turnover of ubiquitinated proteins by the proteasome, although whether protein degradation is accelerated or delayed seems to be cell-type and substrate specific. For example, combined inhibition of USP14 and the proteasomal deubiquitinating enzyme UCH37 halts protein degradation and promotes apoptosis in multiple myeloma cells, whereas USP14 inhibition alone accelerates the degradation of aggregate-prone proteins in immortalized cell lines. These findings have prompted interest in USP14 as a therapeutic target both inside and outside of the nervous system. However, loss of USP14 in the spontaneously occurring ataxia mouse mutant leads to a dramatic neuromuscular phenotype and early perinatal lethality, suggesting that USP14 inhibition may have adverse consequences in the nervous system. We therefore expressed a catalytically inactive USP14 mutant in the mouse nervous system to determine whether USP14's catalytic activity is required for neuromuscular junction (NMJ) structure and function. Results: Mice expressing catalytically inactive USP14 in the nervous system exhibited motor deficits, altered NMJ structure, and synaptic transmission deficits that were similar to what is observed in the USP14-deficient ataxia mice. Acute pharmacological inhibition of USP14 in wild type mice also reduced NMJ synaptic transmission. However, there was no evidence of altered proteasome activity when USP14 was inhibited either genetically or pharmacologically. Instead, these manipulations increased the levels of non-proteasome targeting ubiquitin conjugates. Specifically, we observed enhanced proteasome-independent ubiquitination of mixed lineage kinase 3 (MLK3). Consistent with the direct activation of MLK3 by ubiquitination, we also observed increased activation of its downstrea targets MAP kinase kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK). In vivo inhibition of JNK improved motor function and synapse structure in the USP14 catalytic mutant mice. Conclusions: USP14's catalytic activity is required for nervous system structure and function and has an ongoing role in NMJ synaptic transmission. By regulating the ubiquitination status of protein kinases, USP14 can coordinate the activity of intracellular signaling pathways that control the development and activity of the NMJ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据