4.5 Article

Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives

期刊

MOLECULAR MICROBIOLOGY
卷 99, 期 1, 页码 34-42

出版社

WILEY
DOI: 10.1111/mmi.13215

关键词

-

资金

  1. FEDER funds
  2. Fondo Social Europeo through Junta de Andalucia [P09-RNM-4509, CVI-7335]
  3. Spanish Ministry for Economy and Competitiveness [BIO2010-16937, BIO2013-42297]

向作者/读者索取更多资源

Chemotaxis is an essential mechanism that enables bacteria to move toward favorable ecological niches. Escherichia coli, the historical model organism for studying chemotaxis, has five well-studied chemoreceptors. However, many bacteria with different lifestyle have more chemoreceptors, most of unknown function. Using a high throughput screening approach, we identified a chemoreceptor from Pseudomonas putida KT2440, named McpH, which specifically recognizes purine and its derivatives, adenine, guanine, xanthine, hypoxanthine and uric acid. The latter five compounds form part of the purine degradation pathway, permitting their use as sole nitrogen sources. Isothermal titration calorimetry studies show that these six compounds bind McpH-Ligand Binding Domain (LBD) with very similar affinity. In contrast, non-metabolizable purine derivatives (caffeine, theophylline, theobromine), nucleotides, nucleosides or pyrimidines are unable to bind McpH-LBD. Mutation of mcpH abolished chemotaxis toward the McpH ligands identified - a phenotype that is restored by complementation. This is the first report on bacterial chemotaxis to purine derivatives and McpH the first chemoreceptor described that responds exclusively to intermediates of a catabolic pathway, illustrating a clear link between metabolism and chemotaxis. The evolution of McpH may reflect a saprophytic lifestyle, which would have exposed the studied bacterium to high concentrations of purines produced by nucleic acid degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据