4.7 Article

Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijrmms.2011.01.004

关键词

GIS model; Ground movement; Underground mining; Structural damage assessment; Subsidence

向作者/读者索取更多资源

In this paper, combining a theoretical method of predicting subsidence over time and using a geographical information system (GIS), a GIS-based dynamic model is proposed to rapid simulate the phenomenon of progressive movement distribution from large sequential mining. The theoretical method uses stochastic medium concept involving Knothe time function for basic governing equations to calculate progressive movement because this solutions have been widely developed and used in Chinese mining practice to solve the coal extraction problem under building, railways, and rivers. In order to assess the impact of progressive movement to the surface structures, a fuzzy model is suggested to identify damage classifications with contributions of subsidence calculations and building mesh data. For implementation of the GIS-based prediction and assessment model, a new GIS coupling model is established by implementing tight coupling strategy using the component object model (COM) program to overcome the problems of complex model integration for dynamic prediction and assessment. Furthermore, this paper demonstrates the effectiveness of this GIS-based model for prediction and evaluation of subsidence-induced damage from coal mining beneath surface structures in China. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据