4.7 Article

The effects of nanoparticle addition on SiC and AlN powder-polymer mixtures: Packing and flow behavior

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrmhm.2012.08.014

关键词

Nanoparticles; Rheology; Packing fraction; Bimodal mixtures; Silicon carbide; Aluminum nitride

向作者/读者索取更多资源

The development of methods to increase sintered density and improve dimensional tolerances is a crucial issue in powder metallurgy and ceramic processing. Increasing the packing density of starting powders is one effective route to achieve high sintered density and dimensional precision. The current paper presents an in-depth study on the effect of nanoparticle addition on the powder content of SiC and AIN powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles were found to have significantly increased powder volume fraction (solids loading) in the mixtures for injection molding. This observation to increasing packing density by using nanoparticles is surprising and novel since nanoparticles are known to inherently exhibit poor packing behavior. Additionally, for a given volume fraction of powder, the bimodal mu-n suspensions had a lower viscosity at any shear rate compared to the monomodal mu-suspensions. The ability to lower the suspension viscosity by adding nanoparticles to micron-sized particles has important implications for processing of particulate suspensions by powder injection molding (PIM), extrusion, slip casting and tape casting. Samples made from bimodal powders exhibited slower polymer removal during debinding and higher densification with lower shrinkage on sintering compared to the corresponding samples made from monomodal powder mixtures. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据