4.7 Article

Predictive modelling of surface roughness in fused deposition modelling using data fusion

期刊

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
卷 57, 期 12, 页码 3992-4006

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00207543.2018.1505058

关键词

predictive modelling; additive manufacturing; condition monitoring; surface roughness; data fusion

资金

  1. University of Central Florida
  2. Digital Manufacturing and Design Innovation Institute

向作者/读者索取更多资源

To realise high quality, additively manufactured parts, real-time process monitoring and advanced predictive modelling tools are crucial for accelerating quality assurance in additive manufacturing. While previous research has demonstrated the effectiveness of physics- and model-based diagnosis and prognosis for additive manufacturing, very little research has been reported on real-time monitoring and predictive modelling of the surface roughness of additively manufactured parts. This paper presents a data fusion approach to predicting surface roughness in fused deposition modelling (FDM) processes. The predictive models are trained using random forests (RFs), support vector regression (SVR), ridge regression (RR), and least absolute shrinkage and selection operator (LASSO). A real-time monitoring system is developed to monitor the health condition of a FDM machine in real-time using multiple sensors. RFs, SVR, RR, and LASSO are demonstrated on the condition monitoring data collected from these sensors. To integrate the data sources, a feature-level data fusion method is introduced. Experimental results have shown that the predictive models trained by the machine learning algorithms are capable of predicting the surface roughness of additively manufacturing parts with very high accuracy. The prediction accuracy can be further improved using the data fusion method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据