4.3 Article

Electric Characterization and Modeling of Microfluidic-Based Dye-Sensitized Solar Cell

期刊

INTERNATIONAL JOURNAL OF PHOTOENERGY
卷 2012, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2012/216780

关键词

-

向作者/读者索取更多资源

The electric response to an external periodic voltage of small amplitude of dye-sensitized solar cells (DSCs) made up with an alternative architecture has been investigated. DSCs have been fabricated with a reversible sealing structure, based on microfluidic concepts, with a precise control on the geometric parameters of the active chamber. Cells with different electrolyte thicknesses have been characterized, without varying the thickness of the TiO2 layer, both under illumination and in dark conditions. Measurements of the electric impedance have been performed in the presence of an external bias ranging from 0 V to 0.8 V. The experimental data have been analyzed in terms of a transmission line model, with two transport channels. The results show that the photovoltaic performances of the microfluidic cell are comparable with those obtained in irreversibly sealed structures, actually demonstrating the reliability of the proposed device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据