4.7 Article

Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 467, 期 1-2, 页码 34-41

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2014.03.048

关键词

Brinzolamide; Glaucoma; Intraocular pressure; Nanocrystal suspension; Ophthalmic delivery

资金

  1. Finnish Funding Agency for Technology and Innovation (Tekes) [480/31/2011, 40188/11]

向作者/读者索取更多资源

Nanocrystal-based drug delivery systems provide important tools for ocular formulation development, especially when considering poorly soluble drugs. The objective of the study was to formulate ophthalmic, intraocular pressure (IOP) reducing, nanocrystal suspensions from a poorly soluble drug, brinzolamide (BRA), using a rapid wet milling technique, and to investigate their IOP reducing effect in vivo. Different stabilizers for the nanocrystals were screened (hydroxypropyl methylcellulose (HPMC), poloxamer F127 and F68, polysorbate 80) and HPMC was found to be the only successful stabilizer. In order to investigate both the effect of an added absorption enhancer (polysorbate 80) and the impact of the free drug in the nanocrystal suspension, formulations in phosphate buffered saline (PBS) at pH 7.4 and pH 4.5 were prepared. Particle size, polydispersity (PI), solid state (DSC), morphology (SEM) as well as dissolution behavior and the uniformity of the formulations were characterized. There was rapid dissolution of BRA (in PBS pH 7.4) from all the nanocrystal formulations; after 1 min 100% of the drug was fully dissolved. The effect was significantly pronounced at pH 4.5, where the dissolved fraction of drug was the highest. The cytotoxicity of nanocrystal formulations to human corneal epithelial cell (HCE-T) viability was tested. The effects of the nanocrystal formulations and the commercial product on the cell viability were comparable. The intraocular pressure (IOP) lowering effect was investigated in vivo using a modern rat ocular hypertensive model and elevated IOP reduction was seen in vivo with all the formulations. Notably, the reduction achieved in experimentally elevated IOP was comparable to that obtained with a marketed product. In conclusion, various BRA nanocrystal formulations, which all showed advantageous dissolution and absorption behavior, were successfully formulated. (C) 2014 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据