4.7 Article

Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 414, 期 1-2, 页码 267-275

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2011.05.008

关键词

Lutein; Solid lipid nanoparticles; Nanostructured lipid carriers; Dermal delivery; Antioxidant; Photo stability

向作者/读者索取更多资源

Topical application of lutein as an innovative antioxidant, anti-stress and blue light filter, which is able to protect skin from photo damage, has got a special cosmetic and pharmaceutical interest in the last decade. Lutein is poorly soluble, and was therefore incorporated into nanocarriers for dermal delivery: solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and a nanoemulsion (NE). Nanocarriers were produced by high pressure homogenization. The mean particle size was in the range of about 150 nm to maximum 350 nm, it decreased with increasing oil content of the carriers. The zeta potential in water was in the range -40 to -63 mV, being in agreement with the good short term stability at room temperature monitored for one month. In vitro release was studied using a membrane free model. Highest release in 24h was observed for the nanoemulsion (19.5%), lowest release (0.4%) for the SLN. Release profiles were biphasic (lipid nanoparticles) or triphasic (NE). In vitro penetration study with a cellulose membrane showed in agreement highest values for the NE (60% in 24 h), distinctly lower values for the solid nanocarriers SLN and NLC (8-19%), lowest values for lutein powder (5%). Permeation studies with fresh pig ear skin showed that no (SLN, NLC) or very little lutein (0.4% after 24 h) permeated, that means the active remains in the skin and is not systemically absorbed. The nanocarriers were able to protect lutein against UV degradation. In SLN, only 0.06% degradation was observed after irradiation with 10 MED (Minimal Erythema Dose), in NLC 6-8%, compared to 14% in the NE, and to 50% as lutein powder suspended in corn oil. Based on size, stability and release/permeation data, and considering the chemical protection of the lutein prior to its absorption into the skin, the lipid nanoparticles are potential dermal nanocarriers for lutein. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Pharmacology & Pharmacy

3D human foreskin model for testing topical formulations of sildenafil citrate

Greta Camilla Magnano, Marika Quadri, Elisabetta Palazzo, Roberta Lotti, Francesca Loschi, Stefano Dall'Acqua, Michela Abrami, Francesca Larese Filon, Alessandra Marconi, Dritan Hasa

Summary: This study aimed to investigate the loading of sildenafil citrate in three commercial transdermal vehicles using 3D full-thickness skin equivalent and compare the results with permeability experiments using porcine skin. The results showed that the results obtained using the 3D skin equivalent were comparable to those obtained using porcine skin, suggesting that the 3D skin model can be a valid alternative for ex-vivo skin absorption experiments.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2024)

Article Pharmacology & Pharmacy

Large volume subcutaneous delivery using multi-orifice jet injection

James W. Mckeage, Andrew Z. H. Tan, Andrew J. Taberner

Summary: Needle-free jet injection is a promising alternative drug delivery technique that offers rapid, non-invasive, and large-volume injections. The study presents a prototype multi-orifice nozzle and a computational fluid dynamic model to demonstrate the feasibility and effectiveness of this technology.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2024)