4.5 Article

Low birth weight is associated with adiposity, impaired skeletal muscle energetics and weight loss resistance in mice

期刊

INTERNATIONAL JOURNAL OF OBESITY
卷 39, 期 4, 页码 702-711

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ijo.2014.120

关键词

-

资金

  1. Canadian Institutes of Health Research [MOP57810, MOP258677]
  2. National Institutes of Health [P20MD000175, DK088319]
  3. American Heart Association [AHA10SDG4230068]
  4. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

BACKGROUND: In utero undernutrition is associated with obesity and insulin resistance, although its effects on skeletal muscle remain poorly defined. Therefore, in the current study we explored the effects of in utero food restriction on muscle energy metabolism in mice. METHODS: We used an experimental mouse model system of maternal undernutrition during late pregnancy to examine offspring from undernourished dams (U) and control offspring from ad libitum-fed dams (C). Weight loss of 10-week-old offspring on a 4-week 40% calorie-restricted diet was also followed. Experimental approaches included bioenergetic analyses in isolated mitochondria, intact (permeabilized) muscle and at the whole body level. RESULTS: U have increased adiposity and decreased glucose tolerance compared to C. Strikingly, when U are put on a 40% calorie-restricted diet they lose half as much weight as calorie-restricted controls. Mitochondria from muscle overall from U had decreased coupled (state 3) and uncoupled (state 4) respiration and increased maximal respiration compared to C. Mitochondrial yield was lower in U than C. In permeabilized fiber preparations from mixed fiber-type muscle, U had decreased mitochondrial content and decreased adenylate-free leak respiration, fatty acid oxidative capacity and state 3 respiratory capacity through complex I. Fiber maximal oxidative phosphorylation capacity did not differ between U and C but was decreased with calorie restriction. CONCLUSIONS: Our results reveal that in utero undernutrition alters metabolic physiology through a profound effect on skeletal muscle energetics and blunts response to a hypocaloric diet in adulthood. We propose that mitochondrial dysfunction links undernutrition in utero with metabolic disease in adulthood.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据