4.0 Article

Application of nanocrystalline metal oxide gas sensors for air quality monitoring

期刊

INTERNATIONAL JOURNAL OF NANOTECHNOLOGY
卷 11, 期 5-8, 页码 583-593

出版社

INDERSCIENCE ENTERPRISES LTD
DOI: 10.1504/IJNT.2014.060580

关键词

gas sensors; metal oxide; thin films; nanocrystalline; air quality

向作者/读者索取更多资源

Increasing concern regarding health effects caused by air pollution, together with the limited spatial resolution achievable with conventional monitoring stations, have driven efforts to develop inexpensive metal oxide gas sensors for air quality measurements. The sensing mechanism is dependent on physicochemical reactions between adsorbed gas molecules and oxygen species on the oxide surface, which modify the height of the grain boundary potential barrier and, thereby, the electrical resistance of the film. The sensitivity is dependent on the grain size and the influence of film structure on the electrical conductivity. A systematic study of the influence of deposition conditions on the structure of nanocrystalline metal oxide thin films was carried out in an attempt to understand its relation to the conductivity with the aim of improving the sensitivity to common pollutant gases such as nitrogen dioxide and carbon monoxide. Tin dioxide is the most commonly used material for gas sensor applications but also has the greatest cross sensitivity. Cross sensitivity can be reduced by the use of alternative materials such as zinc oxide, tungsten oxide, titanium dioxide or mixed metal oxides. Significant improvements in sensitivity and selectivity can be achieved by doping the oxide with a noble metal such as platinum or palladium to catalyse the reactions with adsorbed gas molecules. Solid state microsensors have been constructed by combining microelectronic fabrication methods with thin film technology. Detection of carbon monoxide, nitrogen oxides and benzene at environmentally relevant concentrations has been demonstrated. Integrated with signal processing and data transmission via the telecommunications infrastructure, sensor networks can provide real time information on air pollution with high spatial resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据