4.4 Article

NA+/H+ EXCHANGER 1-AND AQUAPORIN-1-DEPENDENT HYPEROSMOLARITY CHANGES DECREASE NITRIC OXIDE PRODUCTION AND INDUCE VCAM-1 EXPRESSION IN ENDOTHELIAL CELLS EXPOSED TO HIGH GLUCOSE

出版社

BIOLIFE SAS
DOI: 10.1177/039463201002300309

关键词

glucose; hyperosmolarity; nitric oxide; inflammation; diabetes mellitus

资金

  1. Center of Excellence on Aging (C.E.A.)
  2. Consorzio Italiano Ricerche Cardiovascolari (C.I.R.C.)
  3. Associazione Italiana per la Ricerca sul Cancro Funding Source: Custom

向作者/读者索取更多资源

Since diabetic hyperglycaemia causes hyperosmolarity, we investigated the contribution of hyperosmolarity in the proinflammatory endothelial effects of hyperglycemia, and sought to unravel the mechanisms involved. Human aortic endothelial cells (HAEC) were incubated for short-term (1-3 days) or long-term (1-2 weeks) exposures to 5.5 mmol/L glucose (normoglycemia, basal), high glucose (25 and 45 mmol/L, HG), or a hyperosmolar control (mannitol 25 and 45 mmol/L, HM), in the presence or absence of the aquaporin-1 (AQP1) inihibitor dimethylsulfoxide (DMSO), the Na+/H+ exchanger 1 (NHE-1) inihibitor cariporide (CA), the protein kinase C (PKC) inihibitor calphostin C or the PKC beta isoform inhibitor LY379196 (LY). Both short- and long-term exposures to HG and HM decreased the expression of the active, phosphorylated form of endothelial nitric oxide synthase (Ser1146-eNOS) and, in parallel, increased vascular cell adhesion molecule(VCAM)-1 protein at immunoblotting. After 24 h incubation with HG/HM, we observed a significant similar and concentration-dependent enhancement of AQP1 expression. DMSO and CA inhibited hyperosmolarity-induced VCAM-1 expressions, while increasing nitrite levels and Ser1146-eNOS expression. Gene silencing by small interfering RNA reduced the expression of AQP1, and suppressed HG- and HM-stimulated VCAM-1 expression. Calphostin C and LY blunted hyperosmolarity-induced VCAM-1 expression, while increasing the expression of Ser1146-eNOS and nitrite production. Thus HG decreases eNOS activation and induces total VCAM-1 expression in HAEC through a hyperosmolar mechanism. These effects are mediated by activation of the water channels AQP1 and NHE-1, and a PKC beta-mediated intracellular signaling pathway. Targeting osmosignaling pathways may represent a novel strategy to reduce vascular effects of hyperglycemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据