4.7 Article

Effect of vent size on vented hydrogen-air explosion

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 37, 页码 17788-17799

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.07.194

关键词

Vented explosion; Hydrogen; Vent size; External explosion

资金

  1. National Natural Science Foundation of China [11772057]

向作者/读者索取更多资源

In this paper, the effect of vent size on vented hydrogen-air explosion in the room was studied by numerical simulation. Analysis of the explosion temperature, overpressure, dynamic pressure and wind velocity under different vent sizes indicate that these explosion parameters have different change rules inside and outside the room. Inside the room, the vent size has little effect on the explosion temperature, dynamic pressure and wind velocity, but it has a significant impact on the explosion overpressure. As the scaled vent size K-v (A(v)/V-2/3) increases from 0.1 to 0.3, the difference between the maximum internal peak overpressure is 87.8%. Outside the room, as the vent size increases, the high-temperature range (above 800 K) first decreases and then increases, while the explosion dynamic pressure and hurricane zone caused by explosion wind gradually decrease. The maximum high-temperature range (32.5 m for K-v = 0.1) and hurricane zone (41.1 m for K-v = 0.1) can reach 7.0 times and 8.9 times the length of the room, respectively. The explosion dynamic pressure can reach the same order of magnitude as the explosion overpressure under the same vent size. Therefore, these damage effects outside the room cannot be ignored. During the change of vent sizes, for K-v <= 0.3, the explosion parameters change drastically and the disaster effect is significant. For example, external explosion that affect the discharge of internal explosion overpressure occur; explosion that occurs in masonry structures can destroy the structural integrity of the brick walls. Therefore, K-v = 0.3 can be used as a reference for hydrogen-air venting safety design. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据