4.7 Article Proceedings Paper

Simulation of heat and mass transfer in activated carbon tank for hydrogen storage

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 35, 期 15, 页码 8106-8116

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2010.01.021

关键词

Hydrogen storage; Activated carbon; Adsorption; Heat transfer; Mass transfer; Modeling; Simulation

向作者/读者索取更多资源

The charging process of hydrogen storage tank based on bed of activated carbon in a steel container at room temperature (295 K) and medium storage pressure (10 MPa) is simulated with an axisymmetric geometry model using the finite volume commercial solver Fluent. The mass flux profile at the entrance is established using user-defined functions (UDFs). The heat and mass transfer processes in the cylindrical steel tank packed with activated carbon are discussed considering the influence of viscous resistance and inertial resistance of the porous media. The velocity distribution and its effect on the temperature distribution are analyzed. The effects of the flow rate at the inlet and of the adsorption factor on the charging process are studied. A computational fluid dynamics (CFD) approach based on finite volume simulations is used. Results show that the temperature near the bottom of the tank is higher than that at the entrance, temperature in the center of the tank is higher than that near the wall and rises somewhat faster along the axial compared to the radial direction. The highest hydrogen absolute adsorption occurs at the entrance of the tank. A good agreement is found between the simulation results and the available experimental data. The maximum magnitude of the axial velocity is much higher than that of the radial component, resulting in more heat energy transfer along the axial direction than radial direction. In addition, the pressure reaches equilibrium earlier when the mass flow is higher, and the temperature reaches a maximum value faster. (c) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据