4.7 Article

Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 127, 期 -, 页码 1169-1179

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2018.08.112

关键词

Enhanced artificial neural network; Thermo-physical properties; Electrical conductivity; Nanocomposites

向作者/读者索取更多资源

The new nanocomposite material of CuFe2O4 (copper ferrite) nanoparticles coated by SiO2 is synthesized. Then, this newly generated nanocomposite is dispersed in water/ethylene glycol (60:40) to make a new homogeneous nanofluid in order to avoid settling and agglomeration. Through suitable accurate experiments, density, viscosity and electrical conductivity of the mixture are measured at various temperatures and nanoparticles concentrations. Besides we empirical correlations for the same parameters developed via the curve fitting method. To have a better statistical view, the optimization procedure based on the enhanced artificial neural network (EANN), developed at present study, is performed. Furthermore, according to the obtained empirical results, the sensitivity analysis is provided and the margin of deviations is represented for each proposed correlation. Generation, stabilization and measuring the density, viscosity and electrical conductivity of the newly mentioned nanofluid, make present work different from the previous ones in this field. The highest amount of relative electrical conductivity is observed at T = 75 degrees C and phi = 0.02 (g/mL); however, the case of T = 30 degrees C and phi = 0.02 (g/mL) represents the maximum value of relative viscosity. Moreover, density is decreased by temperature augmentation, through all cases. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Thermodynamics

Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics

Manzoore Elahi M. Soudagar, Asif Afzal, Mohammad Reza Safaei, A. Muthu Manokar, Ahmed EL-Seesy, M. A. Mujtaba, Olusegun David Samuel, Irfan Anjum Badruddin, Waqar Ahmed, Kiran Shahpurkar, Marjan Goodarzi

Summary: In this study, experiments were conducted to prepare biodiesel from cottonseed oil and blend it with octanol, with the added improvement of thermal and mass transfer characteristics through functionalized multi-walled carbon nanotubes (MWCNTs). The performance analysis showed that adding octanol and MWCNT nanoparticle can stabilize fuel consumption rate and increase brake thermal efficiency.

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2022)

Correction Thermodynamics

Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics (November, 10.1007/s10973-020-10293-x, 2020)

Manzoore Elahi M. Soudagar, Asif Afzal, Mohammad Reza Safaei, A. Muthu Manokar, Ahmed I. EL-Seesy, M. A. Mujtaba, Olusegun David Samuel, Irfan Anjum Badruddin, Waqar Ahmed, Kiran Shahapurkar, Marjan Goodarzi

Summary: This passage mentions the issue of incorrect publication of the affiliations of authors in an article.

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2022)

Article Engineering, Chemical

Effect of injection timing and duration on the performance of diesel engine fueled with port injection of oxygenated fuels

L. Ranganatha Swamy, N. R. Banapurmath, T. K. Chandrashekar, Manzoore Elahi M. Soudagar, M. Gul, Nik-Nazri Nik-Ghazali, M. A. Mujtaba, Kiran Shahapurkar, Umit Agbulut, Hashim M. Alshehri, A. M. Sajjan, Marjan Goodarzi

Summary: The use of oxygenated fuels as a substitute for diesel fuel in engines can effectively reduce emissions, but it also leads to increased NOx emissions, inferior HC and CO emissions, and shortened ignition delay and combustion duration.

CHEMICAL ENGINEERING COMMUNICATIONS (2023)

Article Chemistry, Physical

The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: A comprehensive experimental study

Mohammad Behzad Botlani Esfahani, S. Mohammad Sajadi, Nidal H. Abu-Hamdeh, Smain Bezzina, Ali Abdollahi, Arash Karimipour, Ferial Ghaemi, Dumitru Baleanu

Summary: The study examined the effects of different concentrations of silver nanoparticles on pool boiling inside deionized water, finding that adding silver nanoparticles can reduce the boiling heat transfer coefficient under certain conditions. Additionally, increasing the concentration can decrease deviations in the boiling heat transfer coefficient at low heat fluxes and increase it at high heat fluxes.

JOURNAL OF MOLECULAR LIQUIDS (2022)

Article Chemistry, Physical

Particle resolved numerical modeling of unsteady forced convection of nanofluid around a porous cuboid with sinusoidal inlet velocity

Mahsa Mohammadi, Milad Massoudifarid, Mohammad Hojaji, Arash Karimipour, Jungho Hwang, Massoud Massoudi Farid

Summary: In this study, particle resolved calculations were used to investigate the laminar, incompressible, unsteady oscillatory flow and convective heat transfer of nanofluid around a porous cuboid. The effects of various factors such as Reynolds number, volume fraction of nanoparticles, aspect ratio of the cuboid, Darcy number and inlet velocity profile were examined. The results demonstrated that increasing Reynolds number enhanced thermal performance, increasing volume fraction of nanoparticles increased Nusselt number but also led to a stronger increase in pressure drop coefficient, and increasing aspect ratio of the cuboid improved both heat transfer and pressure drop coefficient. The optimal frequency for heat transfer and pressure drop was found to be 9.

ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES (2022)

Article Physics, Multidisciplinary

Thermal management of carbon-based dental laminate via additives carbon nanotube and hydroxyapatite in a vessel micro-flow based on the numerical/empirical data

Nidal H. Abu-Hamdeh, Khaled O. Daqrouq, Arash Karimipour, Osama K. Nusier

Summary: This study aims to find the optimized volume fraction of hydroxyapatite bio-ceramic and its composite in human blood plasma and investigate its potential application in relieving tooth thermal pain. The results show that time has an effect on the heat transfer rate in simulated body fluid solution.

EUROPEAN PHYSICAL JOURNAL PLUS (2022)

Article Energy & Fuels

Phase change material dependency on solar power plant building through examination of energy-saving

Muhyaddin J. H. Rawa, Nidal H. Abu-Hamdeh, Arash Karimipour, Osama K. Nusier, Ferial Ghaemi, Dumitru Baleanu

Summary: The study investigated the impact of phase change material on walls and roofs in Jeddah, Saudi Arabia, showing that adding phase change material to the western wall and roof can lead to energy savings.

JOURNAL OF ENERGY STORAGE (2022)

Article Thermodynamics

Effects of various types of nanomaterials on PCM melting process in a thermal energy storage system for solar cooling application using CFD and MCMC methods

Mashhour A. Alazwari, Mohammed Algarni, Mohammad Reza Safaei

Summary: This study aims to improve the thermophysical properties of latent heat thermal energy storage (LHTES) systems by adding various nano-additives to accelerate the melting process. The experimental results show that adding carbon-based nanomaterials significantly reduces the melting time, while metal nanoparticles impair the melting performance. The addition of metal oxide nanoparticles does not provide any substantial advantage to the system.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2022)

Article Materials Science, Multidisciplinary

Fabrication and characterization of nanocrystalline hydroxyapatite reinforced with silica-magnetite nanoparticles with proper thermal conductivity

Mohamad Shahgholi, Pouya Firouzi, Omid Malekahmadi, Sepideh Vakili, Arash Karimipour, Majid Ghashang, Woorod Hussain, Hawraa A. Kareem, Shaghayegh Baghaei

Summary: This study aims to improve the mechanical and thermal properties of SiO2 dental composites by incorporating reinforced-hydroxyapatite nano-powder. The results demonstrate that the addition of hydroxyapatite significantly enhances the mechanical properties and thermal conductivity of the composites.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Energy & Fuels

Increasing electricity generation-Installing photovoltaic cells coupled to a battery pack, to provide the electricity

Ahmad H. Milyani, Elias M. Salilih, Mohammed N. Ajour, Hesham A. Alhumade, Nidal H. Abu-Hamdeh, Arash Karimipour

Summary: By 2050, renewables are expected to account for 70% of electricity generation, with solar energy leading the way. The study focuses on a concrete solar plant that utilizes solar cells and battery systems to generate electricity. A heat exchanger model is developed to analyze the heat transfer characteristics of melted salt and steam/water. The results show that battery cooling is effective under certain conditions.

JOURNAL OF ENERGY STORAGE (2022)

Article Energy & Fuels

Numerical Crank-Nicolson transient thermal analysis of a single U-tube vertical ground battery borehole heat exchanger filled with the phase change material

Elias M. Salilih, Nidal H. Abu-Hamdeh, Ahmed Khoshaim, Arash Karimipour

Summary: This paper investigates the transient thermal performance of a single u-tube vertical ground heat exchanger using n-octadecane PCM material as a backfill grout material. The analysis is performed using the Crank-Nicolson finite difference numerical method, and the transient thermal characteristics of the battery borehole heat exchanger are presented.

JOURNAL OF ENERGY STORAGE (2022)

Article Energy & Fuels

The investigation of battery thermal management via effects of using phase change materials in the oval packages around the lithium-ion battery cells with an airflow

Mohammed N. Ajour, Ahmad H. Milyani, Nidal H. Abu-Hamdeh, Meshari A. Al-Ebrahim, Arash Karimipour

Summary: This paper investigates the impact of phase change materials on the thermal management system of lithium-ion batteries and presents numerical analysis results. The findings include the decrease of PCM melt volume fraction over time and the influence of different distances between battery rows on temperature and PCM melt volume fraction.

JOURNAL OF ENERGY STORAGE (2022)

Article Chemistry, Multidisciplinary

Application of water scrubbing technique for biogas upgrading in a microchannel

Sara Behaien, Babak Aghel, Mostafa Safdari Shadloo

Summary: In this study, biogas was upgraded by removing CO2 using three absorbents in a microchannel system. The effects of operating variables were investigated, and a quadratic model was proposed to predict the response. The experimental values matched the model values well.

KOREAN JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Green & Sustainable Science & Technology

A hybrid deep learning- CFD approach for modeling nanoparticles? sedimentation processes for possible application in clean energy systems

Mehrdad Mesgarpour, Omid Mahian, Ping Zhang, Somchai Wongwises, Lian-Ping Wang, Goodarz Ahmadi, Sandro Nizetic, Mikhail Sheremet, Mostafa Safdari Shadlooj

Summary: Sedimentation has a direct impact on the thermal performance and efficiency of thermal systems. This study investigates the deposition of nanoparticles inside a tube for possible application in parabolic solar collectors. A combination of lattice Boltzmann and control finite volume methods is used for realistic simulation, and the results are used to train a deep feed-forward neural network to visualize and predict sedimentation behavior. This research provides valuable insights into particle behavior and parameter variation near the surface, and has implications for predicting service periods and cost savings in heat transfer equipment maintenance.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Thermodynamics

Natural convection effects in insulation layers of spherical cryogenic storage tanks

Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah

Summary: This study investigates the natural convection effects in the insulation layers of spherical storage tanks and their impact on the tanks' performance. The permeability and Rayleigh number of the insulation material are considered as key factors. The results show that as the Rayleigh number increases, new convective cells emerge and cause the cold boundary to approach the external hot boundary. In the case of large temperature differences, multiple solutions may coexist.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)

Jinyang Xu, Fangjun Hong, Chaoyang Zhang

Summary: This study introduces a self-induced jet impingement device for enhancing pool boiling performance in high power electronic cooling. Through visualization and parametric investigations, the effects of this device on pool boiling performance are studied, revealing the promotion of additional liquid supply and vapor exhausting. The flow rate of the liquid jet is found to positively impact boiling performance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment

Wenchao Ke, Yuan Liu, Fissha Biruke Teshome, Zhi Zeng

Summary: Underwater wet laser welding (UWLW) is a promising and labor-saving repair technique. A thermal multi-phase flow model was developed to study the heat transfer, fluid dynamics, and phase transitions during UWLW. The results show that UWLW creates a water keyhole, making the welding environment similar to in air laser welding.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials

Xingrong Lian, Lin Tian, Zengyao Li, Xinpeng Zhao

Summary: This study investigates the heat transfer mechanisms in natural fiber-derived porous structures and finds that thermal radiation has a significant impact on the thermal conductivity in low-density regions, while natural convection rarely occurs. Insulation materials derived from micron-sized natural fibers can achieve minimum thermal conductivity at specific densities. Strategies to lower the thermal conductivity include increasing porosity and incorporating nanoscale pores using nanosize fibers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Ice accretion compositions in ice crystal icing

Yasir A. Malik, Kilian Koebschall, Stephan Bansmer, Cameron Tropea, Jeanette Hussong, Philippe Villedieu

Summary: Ice crystal icing is a significant hazard in aviation, and accurate modeling of sticking efficiency is essential. In this study, icing wind tunnel experiments were conducted to quantify the volumetric liquid water fraction, sticking efficiency, and maximum thickness of ice layers. Two measurement techniques, calorimetry and capacitive measurements, were used to measure the liquid water content and distribution in the ice layers. The experiments showed that increasing wet bulb temperatures and substrate heat flux significantly increased sticking efficiency and maximum ice layer thickness.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades

Jinqi Hu, Tongtong Geng, Kun Wang, Yuanhong Fan, Chunhua Min, Hsien Chin Su

Summary: This study experimentally examined the heat dissipation of vibrating fans and demonstrated its inherent mechanism through numerical simulation. The results showed that the flow fields induced by the vibrating blades exhibited pulsating features and formed large-scale and small-scale vortical structures, significantly improving heat dissipation. The study also identified the impacts of different blade structures and developed a trapezoidal-folding blade, which effectively reduced the maximum temperature of the heat source and alleviated high-temperature failure crisis.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Molecular dynamics simulation of interfacial heat transfer behavior during the boiling of low-boiling-point organic fluid

Dan-Dan Su, Xiao-Bin Li, Hong-Na Zhang, Feng-Chen Li

Summary: The boiling heat transfer of low-boiling-point working fluid is a common heat dissipation technology in electronic equipment cooling. This study analyzed the interfacial boiling behavior of R134a under different conditions and found that factors such as the initial thickness of the liquid film, solid-liquid interaction force, and initial temperature significantly affect the boiling mode and thermal resistance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

A unified lattice Boltzmann- phase field scheme for simulations of solutal dendrite growth in the presence of melt convection

Jinyi Wu, Dongke Sun, Wei Chen, Zhenhua Chai

Summary: A unified lattice Boltzmann-phase field scheme is proposed to simulate dendrite growth of binary alloys in the presence of melt convection. The effects of various factors on the growth are investigated numerically, and the model is validated through comparisons and examinations.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study of the temperature characteristics of the main cables and slings in suspension bridge fires

Shaokun Ge, Ya Ni, Fubao Zhou, Wangzhaonan Shen, Jia Li, Fengqi Guo, Bobo Shi

Summary: This study investigated the temperature distribution of main cables in a suspension bridge during fire scenarios and proposed a prediction model for the maximum temperature of cables in different lane fires. The results showed that vehicle fires in the emergency lane posed a greater thermal threat to the cables.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Two-phase flow and heat transfer on a cylinder via low-velocity jet impact

Shuang-Ying Wu, Shi-Yao Zhou, Lan Xiao, Jia Luo

Summary: This paper investigates the two-phase flow and heat transfer characteristics of low-velocity jet impacting on a cylindrical surface. The study reveals that the heat transfer regimes are non-phase transition and nucleate boiling with the increase of heat transfer rate. The effects of jet impact height and outlet velocity on local surface temperatures are pronounced at the non-phase transition stage. The growth rates of heat transfer rate and liquid loss rate increase significantly from the non-phase transition to nucleate boiling stage.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Investigation on natural to ventilated cavitation considering the air-vapor interactions by Merging theory with insight on air jet location/rate effect

Emad Hasani Malekshah, Wlodzimierz Wlodzimierz, Miros law Majkut

Summary: Cavitation has significant practical importance and can be controlled by air injection. This study investigates the natural to ventilated cavitation process around a hydrofoil through numerical and experimental methods. The results show that the location and rate of air injection have a meaningful impact on the characteristics of cavitation.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

Feriel Yahiat, Pascale Bouvier, Antoine Beauvillier, Serge Russeil, Christophe Andre, Daniel Bougeard

Summary: This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study on anti-frost property and edge effect of superhydrophobic surface with millimeter-scale geometries

Hui He, Ning Lyu, Caihua Liang, Feng Wang, Xiaosong Zhang

Summary: This study investigates the condensation, frosting, and defrosting processes on superhydrophobic surfaces with millimeter-scale structures. The results reveal that the structures can influence the growth and removal of frost crystals, with the bottom grooves creating a frost-free zone and conical edges promoting higher frost crystal heights. Two effective methods for defrosting are observed: hand-lifting the groove and airfoil retraction contraction on protruding structures. This research provides valuable insights into frost formation and defrosting on millimeter-structured superhydrophobic surfaces, with potential applications in anti-frost engineering.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies

Thiwanka Arepolage, Christophe Verdy, Thibaut Sylvestre, Aymeric Leray, Sebastien Euphrasie

Summary: This study developed two thermal concentrators, one with a 2D design of uniform thickness and another with a 3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal conductor, the desired local density-heat capacity product and anisotropic thermal conductivities were achieved. The homogenized thermal conductivities were obtained from finite element simulations and cylindrical symmetry consideration. A 3D concentrator was fabricated using 3D metal printing and characterized using a thermal camera. Compared to devices that solely consider anisotropic conductivities, the time evolution characteristics of the metadevice designed with coordinate transformation were closer to those of an ideal concentrator.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Supercritical heat transfer of CO2 in horizontal tube emphasizing pseudo-boiling and stratification effects

Liangyuan Cheng, Qingyang Wang, Jinliang Xu

Summary: In this study, we investigated the supercritical heat transfer of CO2 in a horizontal tube with a diameter of 10.0 mm, covering a wide range of pressures, mass fluxes, and heat fluxes. The study revealed a non-monotonic increase in wall temperatures along the flow direction and observed both positive and negative wall temperature differences between the bottom and top tube. The findings were explained by the thermal conduction in the solid wall interacting with the stratified-wavy flow in the tube.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)