4.7 Article

Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2013.04.033

关键词

Numerical simulation; Mixed convection; Supercritical CO2; Heat transfer

资金

  1. Natural Science Foundation of China [51006035, U1034004]
  2. Natural Science Foundation of China of International cooperation project [51210011]

向作者/读者索取更多资源

We performed the numerical simulations of laminar mixed convective flow and heat transfer in a 0.5 mm diameter and 1000.0 mm length tube. The supercritical carbon dioxide in the tube was cooled at constant wall temperature. The inclination angles were in the range of -90 degrees (vertical downward flow) to 90 degrees (vertical upward flow). The velocity and temperature distributions, secondary flow, friction factor and heat transfer coefficient were plotted vs. inclination angles and gravity force magnitudes. The kinetic energy of secondary flow was introduced to quantify its effect on the heat transfer. It is found that under the mixed convective flow and heat transfer conditions, the horizontal flow display the largest heat transfer coefficients. The inclined flows at alpha = -30 degrees and 30 degrees also behave better heat transfer performance among various inclination angles. The effect of inclined angles on the heat transfer is decreased with decreases in the gravity force magnitudes. The combined parameter of Gr/Re-b(2) was used to quantify the buoyancy force effect on the flow and heat transfer. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据