4.7 Article

Thermal performance of a novel heat transfer fluid containing multiwalled carbon nanotubes and microencapsulated phase change materials

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 54, 期 25-26, 页码 5554-5567

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2011.07.031

关键词

Microencapsulated phase change materials; Multi-walled carbon nanotubes; Transient hot wire; Enhanced heat transfer fluid; Turbulent flow; Thermal conductivity

资金

  1. California Energy Commission

向作者/读者索取更多资源

Three new heat transfer fluids consisting of combinations of multi-walled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs) were formulated, and tested in a turbulent flow heat transfer loop. Stable nanofluids have been prepared using different sizes of multi-walled carbon nanotubes and their thermal properties like thermal conductivity, viscosity and heat transfer coefficient have been measured. Microencapsulated phase change material slurries containing octadecane as phase change material have been tested to determine their durability and viscosity. A blend of MPCM slurry with MWCNT nanofluid has also been prepared to form a new heat transfer fluid that exhibits unique thermophysical properties including non-Newtonian viscous behavior. Heat transfer experiments have also been conducted to determine heat transfer coefficient and pressure drop values of the MWCNT nanofluids, MPCM slurries, and blends of MWCNT with MPCM under turbulent flow and constant heat flux conditions. The heat transfer results of the MPCM slurry containing octadecane was in good agreement with the published results. A maximum thermal conductivity enhancement of 8.1% was obtained for MWCNTs with diameter of 60-100 nm and length 0.5-40 mu m. Heat transfer results indicate that MWCNT nanofluid exhibits a convective heat transfer enhancement in the range of 20-25% in turbulent flow conditions. The blend of MPCMs and MWCNTs was highly viscous and displayed a non-Newtonian shear thinning behavior. Due to its high viscosity, the blend exhibited laminar behavior and lower heat transfer rate, though the maximum local heat transfer coefficient achieved by the blend was comparable to that obtained with MPCM slurry alone. The pressure drop of the blend was also lower than that of the MWCNT nanofluid. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据