4.5 Article Proceedings Paper

Intensified heat transfer in modulated rotating Rayleigh-Benard convection

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2014.04.007

关键词

Rayleigh-Benard convection; Direct numerical simulation; Modulated rotation; Nusselt number; Turbulence

资金

  1. Dutch National Science Foundation (NWO) [SH-061]

向作者/读者索取更多资源

Heat transfer in a Rayleigh-Benard configuration consisting of a vertical cylinder, which is rotating about its axis, can be intensified considerably when the rotation rate is modulated harmonically in time. Such time-dependent rotation introduces an Euler force into the governing equations which leads to a particular modification of the flow that is shown to support a Nusselt number (Nu) that is considerably higher than in case of constant rotation. We use direct numerical simulation of the incompressible Navier-Stokes equations to perform a comprehensive parameter study of the flow-structuring and associated heat transfer investigating primarily the effect of variations in the frequency with which the rotation rate varies. We consider flow in an upright cylinder of unit aspect ratio which is heated from below and cooled at the top. At sufficiently strong Euler forces the temporal variation of Nu shows a striking dynamics with periods of gradual increase in Nu with more rapid oscillations superimposed, next to rather catastrophic events in which the entire flow-structure that supported high levels of Nu collapses entirely and it returns to a value more similar to that attained at steady rotation. During periods of oscillatory build-up of Nu, high levels of turbulence gradually become more pronounced from the outer cylinder wall inward and a gradually stronger thermal column arises along the centreline of the cylinder. This flow structure can support Nu up to 250% larger than without rotation, a value otherwise achievable only by employing phase transition. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据