4.6 Article

Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2011.05.017

关键词

Oxy-fuel combustion; CER; SCR; Hg; SO3

资金

  1. New Energy and Industrial Technology Development Organization (NEDO) of Japan

向作者/读者索取更多资源

Oxy-fuel combustion systems have been under development to reduce CO2 emissions from coal-fired power plants. In oxy-fuel combustion system, Hg in the flue gas causes corrosion in CO2 purification and compression units. Also, SO3 in the flue gas corrodes the equipment and ducts of oxy-fuel combustion system. Therefore, Hg and SO3 need to be removed. Babcock-Hitachi conducted tests using a 1.5 MWth Combustion & Air Quality Control System (AQCS) test facility which consists of oxygen supply unit, furnace, Selective Catalytic Reduction (SCR) catalyst, Clean Energy Recuperator (CER), Dry Electrostatic Precipitator (DESP), flue gas recirculation system, Wet Flue Gas Desulfurization (WFGD), and CO2 Compression and Purification Unit (CPU). In both cases of air and oxy-fuel combustion, the Hg removal across the DESP could be improved, and SO3 concentration at the DESP outlet could be reduced to less than 1 ppm by installing a CER upstream of the DESP and reducing the gas temperature at the DESP inlet. Hg was not dissolved in the drain recovered from CO2 compressor, and may be adsorbed at an inner part of CO2 compressor. This indicated that Hg needs to be removed at a location upstream of the CO2 compressor to prevent corrosion of the compressor. (C) 2011 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据