4.6 Article

Desorption of CO2 from activated carbon fibre-phenolic resin composite by electrothermal effect

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2009.06.003

关键词

CO2 capture; Electrothermal swing adsorption; Activated carbon fibre-phenolic resin composite

资金

  1. University of Queensland

向作者/读者索取更多资源

CO2 capture by electrothermal swing adsorption is considered superior over conventional adsorption approaches: temperature swing adsorption and pressure swing adsorption. In this work, the effects of electricity, preheating and flow rate were studied. An increase in energy input by electricity has been found able to improve desorption performance more significantly than an increase in current level. However, higher current level is recommended because it can minimise energy loss while passing electricity. Higher flow rate can also be beneficial due to the improved desorption rate and reduced desorption time. However, there is a drop in CO2 concentration in the effluent gas. When desorption takes place at a high current level, preheating is not required as it extends desorption duration with no obvious improvement in desorption rate. CO2 capture by electrothermal swing adsorption has also been tested with different concentrations of CO2. It is found that electrothermal swing adsorption can be more energy efficient while dealing with higher concentration CO2. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据