4.7 Article

Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2013.12.003

关键词

Nanobeam; Vibration; Nonlocal elasticity theory; Functionally gradient materials

向作者/读者索取更多资源

In this study Timoshenko beam theory that applies the size dependent effects in functionally graded material (FGM) beam is discussed. The material properties of FG nanobeams are considered to vary over the thickness based to the power law. The equations of motion according to Eringen nonlocal theory, using Hamilton's principle are derived and a closed-form solution is presented for vibration behavior of the proposed model. The nonlocal elasticity theory contains a material length scale parameter that can apply the size effect in a FG material. The model is verified by comparing the obtained results with benchmark results available in the literature. In following a parametric study is accompanied to examine the effects of the gradient index, length scale parameter and length-to-thickness ratio on the vibration of FGM nanobeams. It is observed that these parameters are vital in investigation of the free vibration of a FG nanobeam. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据