4.7 Article

A new generalized Oldroyd-B model for blood flow in complex geometries

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2013.06.009

关键词

-

向作者/读者索取更多资源

A new generalization of the Oldroyd-B model is developed to describe the flow of blood. The model is developed within a thermodynamic framework which recognizes that a viscoelastic fluid can remain stress free in multiple configurations. The new model is an improvement over an earlier model developed within the same framework to describe the response characteristics of blood. It captures the shear-thinning and deformation-dependent viscoelastic behavior of blood just like the previous model. More importantly, unlike the previous model, it does not have the shortcoming of an abrupt transition of the material properties at low shear rates: instead, it allows for a smooth variation of the rate of dissipation, and therefore viscosity, over the entire range of physically feasible shear-rates. This feature is very attractive for developing high-fidelity numerical methods for application to the complex geometries that are typically encountered in the human vasculature. Convergence of the numerical method in simple geometries shows its superior properties as compared to the earlier model: this demonstration of model performance is a precursor to its use in 3D geometries. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据