4.7 Article

Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects

期刊

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE
卷 47, 期 11-12, 页码 1433-1444

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2008.12.013

关键词

Displacements; Elasticity; Nanomechanics; Size-effects; Surface energy; Surface stress

资金

  1. Natural Science and Engineering Research Council of Canada

向作者/读者索取更多资源

Consideration of surface (interface) energy effects on the elastic field of a solid material has applications in several modern problems in solid mechanics. The Gurtin-Murdoch continuum model [M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57 (1975) 291-323; M.E. Gurtin, J. Weissmuller, F. Larche, Philos. Mag. A 78 (1998) 1093-1109] accounting for surface energy effects is applied to analyze the elastic field of an isotropic elastic layer bonded to a rigid base. The surface properties are characterized by the residual surface tension and surface Lame constants. The general solutions of the bulk medium expressed in terms of Fourier integral transforms and Hankel integral transforms are used to formulate the two-dimensional and axisymmetric three-dimensional problems, respectively. The generalized Young-Laplace equation for a surface yields a set of non-classical boundary conditions for the current class of problems. An explicit analytical solution is presented for the elastic field of a layer. The layer solution is specialized to obtain closed-form solutions for semi-infinite domains. Selected numerical results are presented to show the influence of surface elastic constants and layer thickness on stresses and displacements. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据