4.7 Article

Biomarkers, ketone bodies, and the prevention of Alzheimer's disease

期刊

METABOLISM-CLINICAL AND EXPERIMENTAL
卷 64, 期 3, 页码 S51-S57

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.metabol.2014.10.033

关键词

Amyloid cascade hypothesis; Mitochondrial cascade hypothesis; Ketone ester; Endophenotype; Magnetic resonance spectroscopy

向作者/读者索取更多资源

Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (A beta) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACM) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Endocrinology & Metabolism

Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation

Emilie Steinbach, Davide Masi, Agnes Ribeiro, Patricia Serradas, Tiphaine Le Roy, Karine Clement

Summary: The study of the gut microbiome is crucial for understanding and treating metabolic diseases. While research on the fecal microbiome has provided valuable insights, relying solely on this may not be enough to draw comprehensive conclusions. The microbiome in the proximal part of the small intestine may play a significant role in metabolic regulation, but further exploration is needed due to limited accessibility.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4

Evangelia Chavdoula, Vollter Anastas, Alessandro La Ferlita, Julian Aldana, Giuseppe Carota, Mariarita Spampinato, Burak Soysal, Ilaria Cosentini, Sameer Parashar, Anuvrat Sircar, Giovanni Nigita, Lalit Sehgal, Michael A. Freitas, Philip N. Tsichlis

Summary: This study reveals the important role of KDM2B in triple-negative breast cancer (TNBC). KDM2B affects cellular resistance to oxidative stress by regulating a network of genes and metabolic enzymes, in collaboration with ATF4 and MYC. Additionally, high expression of KDM2B is associated with poor prognosis in patients.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

Statin therapy in individuals with intermediate cardiovascular risk

Joongmin Kim, Hyeongsoo Kim, Sang Hyun Park, Yura Kang, Kyungdo Han, Sang-Hak Lee

Summary: This study aimed to investigate the optimal LDL-C level after statin therapy in individuals with intermediate cardiovascular risk. The results showed that achieving LDL-C levels <120 mg/dL after statin therapy could lower the event risk.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Review Endocrinology & Metabolism

Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease

Ze Chen, Li -Ping Xia, Lang Shen, Dan Xu, Yu Guo, Hui Wang

Summary: Accumulating evidence suggests that NAFLD has an intrauterine origin, with adverse prenatal environments and glucocorticoid exposure playing a crucial role in the developmental programming of fetal hepatic lipid metabolism. The offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis is programmed in utero, leading to postnatal catch-up growth and disrupted glucose and lipid metabolism, increasing susceptibility to NAFLD. Mismatch between intrauterine and postnatal environments can further disturb the programmed endocrine axes and accelerate the onset of NAFLD.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Article Endocrinology & Metabolism

CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease

Fuwen Zuo, Youzhao Wang, Xinlei Xu, Ruihao Ding, Wei Tang, Yu Sun, Xiaojie Wang, Yan Zhang, Jichao Wu, Yusheng Xie, Min Liu, Ziying Wang, Fan Yi

Summary: This study investigates the role of CCDC92 in the pathogenesis of diabetic kidney disease (DKD). The expression of CCDC92 was found to increase in kidney biopsies from patients with DKD and was correlated with glomerular lipid accumulation. Animal studies further confirmed the induction of CCDC92 in the kidney, particularly in podocytes, and the podocyte-specific deletion of Ccdc92 ameliorated podocyte injury and lipid deposition. CCDC92 was shown to promote podocyte lipotoxicity through ABCA1 signaling-mediated lipid homeostasis. Therefore, CCDC92 may serve as a potential biomarker of podocyte injury in DKD and targeting CCDC92 could be an innovative therapeutic strategy for DKD patients.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)

Review Endocrinology & Metabolism

Brown adipose tissue-derived metabolites and their role in regulating metabolism

Khanyisani Ziqubu, Phiwayinkosi Dludla, Sihle E. Mabhida, Babalwa U. Jack, Susanne Keipert, Martin Jastroch, Sithandiwe E. Mazibuko-Mbeje

Summary: The discovery and revival of brown adipose tissue (BAT) in adult humans have opened up new possibilities for treating obesity and metabolic diseases. BAT not only plays a role in generating heat, but also secretes signaling molecules known as batokines, which regulate overall metabolism. This review highlights the importance of BAT-derived metabolites in controlling thermogenesis, substrate metabolism, and other biological processes, as well as their potential to alleviate obesity and related metabolic complications.

METABOLISM-CLINICAL AND EXPERIMENTAL (2024)