4.6 Article

Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2014.06.007

关键词

Chemosensitization; Cisplatin; Non-homologous DNA end joining; DNA-dependent protein kinase; DNA double-strand breaks; Etoposide; Human glioma cells; Wortmannin

资金

  1. Polish Ministry of Science and Higher Education [N401 117 32]
  2. Medical University of Lodz [502-19-677, 503-00-78-3]

向作者/读者索取更多资源

The combination of etoposide and cisplatin represents a common modality for treating of glioma patients. These drugs directly and indirectly produce the most lethal DNA double-stand breaks (DSB), which are mainly repaired by non-homologous DNA end joining (NHEJ). Drugs that can specifically inhibit the kinase activity of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the major component of NHEJ, are of special interest in cancer research. These small molecule inhibitors can effectively enhance the efficacy of current cancer treatments that generate DNA damage. In this study, we investigated the effect of DNA-PKcs inhibitor, wortmannin, on the cytotoxic mechanism of etoposide and cisplatin in MO59K and MO59J human glioblastoma cell lines. These cell lines are proficient and deficient in DNAPK, respectively. Wortmannin synergistically increased the cytotoxicity of cisplatin and etoposide, when combined, in NHEJ-proficient MO59K cells. Surprisingly, wortmannin sensitizing effect was also observed in DNA-PKcs-deficient MO59J cells. These data suggest that wortmannin sensitization to etoposide and cisplatin in human glioma cells is mediated by inhibition of not only DNA-PK activity but other enzymes from PI3-K family, e.g. ATM and ATR. A concentration-dependent increase in etoposide and cisplatin-induced DSB levels was potentiated by inhibitor in both cell lines. Moreover, drug-induced accumulation in the G2/M checkpoint and S-phase was increased by wortmannin. Wortmannin significantly inhibited drug-induced DSB repair in MO59 cells and this effect was more pronounced in M059J cells. We conclude that the mechanism of wortmannin potentiation of etoposide and cisplatin cytotoxicity involves DSBs induction, DSBs repair inhibition, G2/M checkpoint arrest and inhibition of not only DNA-PKcs activity. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据